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Development of Multi Equivalent Series Phase Model for Fracture Analysis of Concrete Structures

by Toshiaki Hasegawa
Abstract

The Multi Equivalent Series Phase Model is derived as a nonlocal macroscopic constitutive law to describe concrete size effects due to fracture
localization. Fracture localization at the microscopic level is modeled using a series phase consisting of fracture and unloading phases. Based on a
constant plastic fracture energy law, the stress-strain softening relations of the series phase are converted into those of an equivalent series phase, taking
into account the length of the series phase. The load-carrying mechanism of concrete is modeled as a number of equivalent series phases distributed
with various orientations in the concrete. It is demonstrated that this model provides good predictions of experimentally obtained size effects on
concrete constitutive relations. In finite element analysis using the model, previously reported fractures and size effects in experimental specimens
under mixed mode I and IT loading are well simulated.
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§ 1. Introduction § 2. Multi Equivalent Series Phase Model

Mechanical models and constitutive laws for concrete 2.1 Fracture Localization at the Microscopic Level
materials must be able to describe nonlocal softening behavior Since the presence of coarse aggregate particles makes
when we numerically simulate softening fractures and damage concrete a heterogeneous material, fracture localization and
localization, which relate to size effects and size dependency. strain softening occur at a microscopic level in a relatively stable
Constitutive laws for continuum mechanics in a narrow sense and distributed manner prior to macroscopic softening fractures.
are regarded as local, while constitutive laws able to describe Although these types of microscopic behavior should be
size effects and nonlocal properties of materials are regarded as described by appropriate micromechanics models, we assume a
nonlocal constitutive laws. The crack band model of Bazant and much simpler mechanical field as shown in Fig. 1(a); distributed
Oh" for nonlinear fracture mechanics is considered a simple, ~ microscopic fracture regions are modeled by independent fibers
nonlocal constitutive model for tensile cracking (mode I constrained by certain conditions as a means to relate the
fractures). However, it is not that easy to establish a general microscopic and macroscopic levels. When a softening fracture
nonlocal constitutive model for concrete with applicability to occurs in each fiber, the microscopic fracture localizes into a
multiaxial stress conditions including compression and shear fracture phase within the fiber while an elastic unloading takes
stresses (rotating principal direction). In this study the Multi place in the remainder of the fiber (the unloading phase). The
Equivalent Series Phase (MESP) Model *” is derived asa  resultis a microscopic strain localization in which the unloading
nonlocal constitutive law suitable for describing size effects due phase supplies the released elastic energy to the fracture phase
to fracture localization in concrete under general multiaxial once the microscopic peak stress of the fiber is reached. We
stress conditions. assume that the stresses in each phase depend on the

corresponding strains of the phase, and that there are unique
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(a) Random distribution of series phases
Fig. 1

relations between them that we call phase-constitutive laws.
Because of series coupling, the stresses © and oV in the
fracture and unloading phases are equal. However, the strain
&Y of the unloading phase is much smaller than the strain £ of
the fracture phase. We define the series phase as the series-
coupled combination of the fracture and unloading phases. The

strain £” of the series phase is calculated from £” and £V, in

which superscripts F, U,and L refer to the fracture, unloading,

and series phases. The equilibrium and strain compatibility

conditions of the series phase are described by Eq. (1).
ol=cf=0" (1a)

eF1F +eUlV _ efif +e”(f"-—l’) (1b)

in which [F, IV, and 1" are the lengths of the fracture,
unloading, and series phases, respectively. This series coupling
model consisting of the fracture and unloading phases is
considered the basic load-carrying mechanism of concrete at the
microscopic level, and the series phase is converted to an
equivalent series phase using a simple homogenization method
described later.

The MESP Model is a nonlocal macroscopic constitutive
model derived assuming that a number of equivalent series
phases are distributed with various orientations in the concrete.
To derive the model for a concrete volume element, the
randomly oriented series phases in the element are collected at
the centroid of the element as shown in Fig, 1(b). It is assumed
that the length [ of each series phase is represented by the
distance between the centroid and the element boundary, and
differs among the series phases (Fig. 1(c)). On the other hand,
the length /7 of each fracture phase is the same for all the series
phases.

el=

2.2 Equivalent Series Phase

The strain softening response of the series phase has to be
composed from the softening behavior of the fracture phase and
the elastic unloading behavior of the unloading phase according
to the equilibrium and strain compatibility conditions given by

(b) Series phases at the centroid
Fracture, unloading, and series phases in a concrete volume element
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(c) Idealized series phases

Eq. (1). This means that, in general, the stress-strain softening
relation for the series phase differs from one direction to another
since each series phase has an individual unloading phase length
in a concrete volume element. If a macroscopic constitutive
model is formulated by composing the softening behavior of the
series phase from the fracture and unloading phase responses, it
is difficult to satisfy the conditions of Eq. (1) and the calculation
becomes inefficient. This is because a kinematic constraint (not
a static one) relates the series phase at the microscopic level,
rather than the fracture and unloading phases, to the macroscopic
level.

The problem is circumvented by introducing an equivalent
series phase which is a homogenized phase consisting of the
fracture and unloading phases taking the conditions of Eq. (1)
into account in a different form. The means of satisfying the
equilibrium and strain compatibility conditions of the series
phase are to adopt a constant plastic fracture energy law (the first
law of thermodynamics) for determining the stress-strain
softening relations of the equivalent series phase and to utilize
relations similar to those describing the fracture phase for the
equivalent series phase.

The stress-strain softening relations (Fig. 2) for the fracture,
unloading, and equivalent series phases are assumed as follows.
For 0 < &” < g, (pre-peak):

EP Cokq/og
of = ao[l —(1 ——J } (22)
€
for £y < €7 (post-peak):
o? =0, exp[-[%ﬂl]] (@b)

in which o” and €” are the stress and strain of phase p;

eo= 22, and & =170 =L Superscripts p= F
0 gCO’an 5 0 ;Co . upcrscrlp p'— 3

U,and E refer to the fracture, unloading, and equivalent series
phases, but Eq. (2b) is not necessary for the unloading phase. In
Eq. (2), C, is the initial modulus, 0, is the peak stress of the
curve, { is a parameter controlling the peak strain €,,and y” is
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phase strain €’
Fig.2 Stress-strain softening relation for phase

a ductility parameter that controls £7. At the strain
eP =gy + €l the stress 07 decreases to 0, /e in the softening
region, i.e., the ductility in the softening region depends on the
strain € or the ductility parameter y”. The stress-strain
relations in the pre-peak region are the same for all phases, but in
the post-peak region the equivalent series phase takes a different
value 7% of ductility parameter from the value y” for the
fracture phase. On the other hand, the unloading phase follows
an elastic unloading path with the initial modulus C, after the
peak stress.
The constant plastic fracture energy law is written as Eq. (3).

VE(1F)gE = vF(iF)g" + vV (1Y )w! (3a)

E(,E EE:“E E _ yF(F £F=°°F F
vE(i ).LE= o de = V(i )LF=0a de

Al )[fU " oY de -35—] (3b)
V=0 2G,

in which V¥ (1), v(1”), and V(I¥) are volumes of the
fracture, unloading, and equivalent series phases depending on
the length of each; g” and g are the plastic fracture energy
densities of the fracture and equivalent series phases; and w is
the plastic energy density of the unloading phase. When
parameters C, and { for the pre-peak region, the ductility
parameter J'F for the fracture phase, and the volume of each
phase are given, the ductility parameter 7~ for the equivalent
series phase can be determined by solving Egs. (2) and (3).
Furthermore, if the volume of the equivalent series phase is
assumed to be the same as the volume of the series phase
consisting of the fracture and unloading phases, i.e., Eq. (4), then

the solution for # is given by Eq. (5).
VE(1E) = vE(I*) = vF(iF)+ vU (1Y) @

——— fracture phase

— — - unloading phase
---=--- Series phase

equivalent series phase.
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Fig.3  Strain softening response of each phase

y£=VZ(1F)[£+yF]_5_ 5)
Vv (:L) 2 2
The volume ratio V¥ (1¥) /V*(1*) inEq. (5)is estimated using
Eq.(6),and d =1 is assumed in this study.
F(F d

w=[£] (6)

vi(it) Ut
in which d is a parameter depending on the shape of the series
phase; and d =1 or 3 if the series phase is treated as a cylinder
with a uniform circular section or as a cone with various circular
sections.

In Fig. 3 calculated softening responses of equivalent series
phases are compared with those of series phases composed from
the behavior of the fracture and unloading phases. These results
show that the strain softening response of the equivalent series
phase is almost identical to that of the series phase. However, for
a snapback as in the case of 1”7 /1" = 0.03, the equivalent series
phase model is not applicable since a kinematic constraint is
adopted in the model, as described later.

2.3 Multi Equivalent Series Phase Model

To derive a nonlocal macroscopic constitutive model, i.e., the
MESP Model, for the concrete volume element shown in Fig.
4(a), every series phase with its own length I between the
centroid of the element and the element boundary is replaced
with an equivalent series phase. The stress-strain softening
relation of each equivalent series phase depends on the length 1*
of the series phase, and is determined using Eq. (5).

In each equivalent series phase a normal strain £, in the
direction n of the fiber and two shear strains &7 and &, inthe
directions of the unit coordinate vectors k and m are
considered. The unit coordinate vectors n, k, and m are
normal to one another (Fig. 4(a)). As in the Enhanced
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(a) Concrete volume element and sphere
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| w=00265214244093
w = 0.0250712367487
w=0.0199301476312

(b) Numerical integration points for hemisphere

Fig.4 Multi equivalent series phases model

Microplane Concrete (EMPC) Model * a tensorial kinematic
constraint is hypothesized to relate the macroscopic strain tensor
€;; o the strains of the equivalent series phase, i.e., the normal
strain €5 and shear strains £5 and €5, of the equivalent series
phase are the resolved components of the macroscopic strain
tensor £;;.

EN =n;n;€; (7a)

S]‘EK:%(kn +h;n))e; ()

sﬁu =-(mn +m;n; )8

» (7c)
in which n;, k;,and m; amcompmmmofthemitooordinate
vectors N, k,and m. In this paper, indicial notation is used for
tensors and the Latin lower-case subscripts refer to Cartesian
coordinates x;, i=1,2,3(x, y, 2).

Normal stress ' and shear stresses 05 and o7y of the
equivalent series phase mainly depend on the normal strain €5,
and shear strains €5, and £Fy,, respectively. The incremental
forms of the phase-constitutive relations for the equivalent series
phase are written separately for the normal component and the
shear components in the K and M directions:

normal component: daﬁ:Cﬁdsﬁ—daﬁu

—fm(fmst.' ) (8a)
K-shear component: dofy = Chedery vdcrrx'

= ffi(efx-SK) (8b)
M-shear component: dofy, = Chyder, - da-ﬂ;u
= fi(&fw> SN ) (8c)
in which C§, Cky,and CE, = incremental elastic stiffnesses

for the equivalent series phase; do , dok, ,and dok,, =
inelastic stress increments for the equivalent series phase;
frr (€N €L St ) =nomal stress increment doy cxpmssuim
terms of normal strain £}, the resolved lateral strain &} of the
MACToscopic strain tensor €, and the resolved lateral stress Sy
of the macroscopic stress tensor o; onto the phase; and
£1i(f:» SK) = shear stress increment do7, expressed in terms
of shear strain €%, and the resolved normal stress Sy, of the
macroscopic stress tensor 0; onto the phase (7s = TK, TM).
Since a uniform state of macroscopic stress and strain is
assumed in the concrete volume element, and microscopic
softening localization is homogenized using the equivalent
series phase, with the length of the series phase taken into
account, we can use an arbitrary inner volume within the
element to relate the responses of the equivalent series phases to
the macroscopic behavior. Here a sphere, with a radius /%,
formed by the equivalent series phases is considered (Fig. 4(a)).
Using the principle of virtual work (i.e., the equality of virtual
works 8W" of the macroscopic stress tensor and SW* of the
stresses in the equivalent series phases within the sphere of

radius /%), we can write
aw" =WE (9a)

8=1x
I j da 3¢, r* sin g do dO dr
- ,;(;-‘3 ) da,-&-- (9b)
0=2x
SWE = j J (daﬁ&e~+darx&n +dofydery)

5 f(n)(! ) sin@do do (%)



in which 6 and ¢ = the spherical angular coordinates (Fig .4);
and 8¢;;, 8¢, defy ,and Sef,, = small variations of the strain
tensor and of the phase strains. The function f(m) is a weight
function for the fiber directions n, which in general can be used
to introduce anisotropy of the material in its initial state. We will
use f(m)= 1, which means isotropy. In this study, two series
phases with opposite orientations in the upper (0 < ¢ < 7/2)
and lower (7/2 <¢ <x) hemispheres are replaced, for
simplicity, by a single series phase which is the average of their
lengths. Then Eq. (9) is reduced to a directional integration over
the upper hemisphere.

4 3 E 6=2r po¢= xlz
StV doysey =30 [

+do i Oeky + dom&:m) f(n)singpdgpde (10)
Expressing 8¢5, STy, and 8e7y by Eq. (7), and substituting
them into Egq. (10) along with the phase-constitutive relations
Eq. (8), we obtain an incremental form of the macroscopic
stress-strain relation

= C,-j,,d!:‘,s . dO’u

0=2x po=nr/ 2
E
:;rs J. J. 'ﬂr"'.rCN

+Z(k,-n -+ kjn, (kg + ko, )Cri

(11a)

1
+I(m,-n;- + mjn‘-)(m,ns +myn, )Cry ]

- f(m)singd¢do

6=2rx o~x;2 .
do; —nI J- nndoy + 2(k n;+kn; )dam

+2( ;+mn; )dam ] -f(n)singdpdé (1lc)
in which 77=17*;and n* =1/27.

The EMPC Model is a local constitutive model derived by
treating microscopic fracture regions as planes (microplanes) of
various orientations. The constitutive equation for the EMPC
Model results in a surface integral over a unit hemisphere with a
surface consisting of microplanes, and is obtained in the form of
Eq. (11) with =0 =3/27 by replacing C¥, Crx, Cru»
dot | dok, ,and dok, with the corresponding variables
for the microplanes. In the study of the EMPC Model, analytical
expressions for the initial normal and shear moduli Cj, and
C of amicroplane are obtained by substituting Cty and Crp
for the incremental elastic stiffnesses in Eq. (11b), considering
initial isotropic elasticity. Initial normal and shear moduli CF,
and Cf, of the equivalent series phase can be obtained for the
MESP Model using a similar method. These initial moduli for
both models are

(11b)

(12a)
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Fig.5 Uniaxial compression analysis
1—4v, )E 1
cH = (1-4vo)Ey =Cfo (12b)

(1-2vo)1+vy) 3
in which E; and v, are Young’s modulus and Poisson’s ratio.
If we redefine the initial moduli of the equivalent series phase as
Chio = Cho and Cr = Cro, and set n=n* =3/2x in Eq.
(11), the microconstitutive models for microplanes in the EMPC
Model can be utilized as phase-constitutive models for the
fracture phases in the MESP Model, which is a very attractive
approach since the EMPC Model has succeeded in describing
the local constitutive relations of concrete under multiaxial stress
conditions with accuracy. We do this in the present study.

The developed MESP Model has been implemented in the
several computational programs. The program DMP is a
constitutive equation solver to calculate constitutive relations of
the model with complicated stress and strain paths. The model
has also been implemented in the finite element program
DIAMESP based on the general purpose finite element system
DIANA® for practical and complicated structural calculation.

§ 3. Verification of Constitutive Relations

The developed MESP Model is verified by comparing the
calculated results it yields with experimentally obtained size
effects on the constitutive relations of concrete as reported in the
literature. In each calculation, the size of a concrete volume
element in the MESP Model (Fig. 4(a)) is assumed to be the
same as the concrete specimen in the corresponding experiment.
This verification of the constitutive relations given by the MESP
Model is carried out using the constitutive equation solver DMP.

3.1 Uniaxial Compression Analysis
In Fig. 5 the calculated results of the size effect on uniaxial
compressive softening are compared with tests by Van Mier”
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Fig.7 Triaxial compression analysis

using concrete prism specimens of the identical section
(100 x 100 mm) but different heights A (50, 100, and
200 mm). The axial stress-strain relations are normalized by
the peak axial stress o7¢“* of each specimen, and the axial strain
£5¢™% commesponding to the peak axial stress of the specimen
with 4 =50 mm. In the analysis, the length /© of the fracture
phase is assumed to be 2/ = 50 mm = 3d,,,, = 48 mm, in
which d,,, is the maximum aggregate size. The MESP Model
can capture the decrease in ductility with increasing specimen
height. Figure 6 shows the normal, K-shear, and M-shear
responses of equivalent series phases (integration points) 2, 3,
and 14 (Fig. 4) in the analysis. The increase in specimen height
causes more brittle softening responses of the equivalent series
phases, and this results in brittle macroscopic behavior.

3.2 Triaxial Compression Analysis

Figure 7 shows the results of triaxial compression analysis
along the compressive meridian in comparison with
experiments by Kosaka et al.”. In these experiments concrete
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prism specimens of the identical section (100 x 100 mm) but
different heights 4 (100 and 200 mm) were tested under
confinement pressures 0, of 0, =3, and —6 kgf /cm?. The
length I” of the fracture phase is taken to be 2/ = 100 mm =
6.6d,, in this analysis. Although the analysis underestimates
the lateral strain in the softening regime during uniaxial
compression as compared with the experimental results, the
model roughly predicts the size effects on triaxial compressive
softening.

3.3 Biaxial Tension-Shear Analysis

To examine applicability of the model under shear stress with a
rotating principal direction, the biaxial tension-shear analysis of
Rots” is simulated. In this analysis, uniaxial tension up to the
uniaxial tensile strength f, is first applied to a concrete volume
element in the x-direction. The element is then immediately
subjected to combined biaxial tension and shear according to
Ag,, 1 Agy, 1 AY,, =05:0.75:1. Two sizes of square
element (1010 mm and 20x 20 mm) with thickness
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Fig.9 Shear responses in biaxial tension-shear analysis

10 mm are considered, and the length /© of the fracture phase is
assumedtobe 2/ = 10 mm in the MESP Model. In Fig. 8, the
results of uniaxial tension analysis using the MESP Model prior
to the biaxial tension-shear analysis are shown along with the
uniaxial tensile relation assumed in the analysis by Rots, who
used the rotating crack model and the multi-directional fixed
crack model, in which g, is the axial strain corresponding to f;.

In Fig. 9, the shear responses obtained in the biaxial tension-
shear analysis using the MESP Model are compared with the
results calculated by Rots using the rotating crack model and the
multi-directional fixed crack model (o = threshold angle). It is
worth noting that the MESP Model predictions of the flexible
shear responses for both element sizes are similar to the result
achieved with the rotating crack model, which has been shown
capable of simulating shear-tension failures of concrete, while
the multi-directional fixed crack model, with larger values of o,
results in much stiffer shear behavior. The MESP Model can
simulate the size effects on shear strength and softening as
shown in Fig. 9.

The rotation angles 6,, and 6, of principal stress and strain are
shown in Fig. 10 for the element 10x10 X 10 mm in

n

6, : rotating crack model
—— - 6, : multi-directional fixed crack model, a=15°
----- 6, : multi-directional fixed crack model, a =45°
- -=-- 6, :multi-directional fixed crack model, a=90°
6, : MESP Model, 10x10x10mm
— = = §, : MESP Model, 10x10x10mm
o @ -
&%
£
8
'5 20
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& 0

shear strain ¥,, /€y
Fig. 10 Rotation of principal axes in biaxial tension-shear
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Fig. 11 Finite element modeling of double-edge-notched
specimen under shear-tension

comparison with the results obtained by the rotating crack model
and the multi-directional fixed crack model. The axes of
principal stress and strain coincide in the present analysis, as with
the rotating crack model. This means that the MESP Model
incorporates the capabilities of the rotating crack model, which
has previously been shown effective in its application to fracture
mechanics.

§ 4. Verification Using Finite Element Analysis

To verify the applicability of the MESP Model to the fracture
analysis of concrete structures, the shear-tension tests carried out
by Van Mier and Nooru-Mohamed "> on double-edge-
notched mortar specimens are simulated using the finite element
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program DIAMESP.

4.1 Finite Element Modeling

The proportional loading tests of load-path 6b in the work of
Van Mier and Nooru-Mohamed are chosen, in which the ratio of
axial to lateral deformations was kept at two. Figure 11 shows
the finite element mesh, boundary conditions, and loading
configuration for the shear-tension analysis. Specimens of
heights h=50, 100, and 200 mm in the size effect
experiments are modeled with geometrically similar finite
element meshes.

4.2 Shear-Tension Analysis

Calculated relations between axial load P, and deformation
&, are compared with the corresponding experimental results in
Fig. 12. The numerical analysis provides a good prediction of
the axial response seen in the experiments, including the size
effects on maximum axial load P,"™ as well as softening
stiffness.

In Fig. 13, the incremental deformation of the A =50 mm
specimen in the finite element analysis is compared with the
experimentally observed crack patterns in specimens of heights
h=50, 100, and 200 mm. This is at the load step where the
axial load P, decreases to P,/P™* =0.2 in the softening
branch. The two overlapping cracks obtained in the numerical
analysis are very similar to the cracking observed in the
experiments.

Figures 14 and 15 show the analytical distribution of positive
maximum principal strain and negative minimum principal
stress inthe £ = 50 mm specimen at the same load step. These
results indicate that mode I fractures are dominant in specimens
with this type of loading path, although the mixed mode type of
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Fig. 13 Incremental deformation in shear-tension analysis
compared with experimental crack patterns

The results of the finite element analysis verify that the MESP
Model is able to predict fractures and size effects in concrete
structures with accuracy.
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§ 5. Conclusions

Fracture localization in concrete at the microscopic level has
been modeled using a series phase consisting of the fracture and
unloading phases, and the softening constitutive relations of this
series phase are converted into those of an equivalent series
phase using a simple homogenization method. The Multi
Equivalent Series Phase Model is derived as a nonlocal
macroscopic constitutive model assuming that a number of such
in the concrete. It has been demonstrated that this model
provides good predictions of experimentally obtained size
effects on concrete constitutive relations. Finite element analysis
using the model gives accurate predictions of fractures and size
effects in concrete structures.
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Fig. 15 Distribution of negative minimum principal stress in
shear-tension analysis
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