剛飛翔体の高速衝突を受けたコンクリート造壁の火災加熱に対する温度性状 と構造挙動に関する実験的研究

森田 武

(技術研究所)

An experimental study on the temperature and structural behavior of a concrete wall exposed to fire after a high-velocity impact by a hard projectile

Takeshi Morita

爆発を伴う事故やタービンなどの回転機器の事故では飛散物が発生し、これらの飛散物が飛翔体となって構造物に衝 突する可能性がある。航空機なども構造物に衝突する飛翔体になり得る。これらの飛翔体の衝突事象では、油や燃料な どの可燃物が存在した場合、火災を誘発する可能性がある。本研究では、コンクリート構造物が剛飛翔体の高速衝突を 受け、かつ火災を受けた場合を想定して、衝突作用後のコンクリート板の遮熱性および鉄筋コンクリート造耐力壁の構 造耐火性を把握することを目的とした。縮小スケールのコンクリート壁に対して高速衝突実験と耐火実験を実施した結 果、衝突作用と火災作用における局部破壊の影響と短繊維補強の有効性が確認された。

Projectiles, such as turbine blades, can be released in an accident and impact structures. Airplanes and other flying objects can also become impact projectiles. These impacts occasionally cause fire when fire loads, such as oil, fuel, and other combustible materials, are present. This study examines the thermal insulation performance of concrete plates and the structural fire behavior of load-bearing reinforced concrete walls that are exposed to fire after a high-velocity impact by a hard projectile. Impact and fire tests were carried out using small-scale concrete plates and reinforced concrete walls. The results show the influence of local damage and the advantage of short-fiber reinforced concrete subjected to impact loads and fire.

1.はじめに

近年、爆発事故や自然災害によって衝撃的な荷 重がコンクリート構造物に作用し、損傷や破壊を 生じるケースが増加している。

衝撃荷重によるコンクリート構造物の破壊は、 全体破壊と局部破壊に分類できる¹⁾。飛翔体がコ ンクリート構造物に高速度で衝突すると、衝突条 件によって、図-1に示すように、表面破壊(衝突 面の破壊(条件によって板内部に斜めひび割れが 生じる))、裏面剥離(衝突面と反対面のコンクリー トの剥離)、貫通(表面破壊と裏面剥離が連結して 飛翔体が裏面側へ貫通する破壊)等の局部破壊を 生じる²⁾。局部破壊は、構造部材の剛性や耐力を 低下させるだけでなく、裏面剥離や貫通に至る場 合には裏面に飛散物を生じる。飛散物の危険から 構造物内の人命や財産を守るためには、裏面剥離 や貫通を防止する必要がある。著者らは、裏面剥 離の防止対策としてコンクリートの短繊維補強に 着目して高速衝突実験を実施し、その有効性を確認した³⁾。

一方、発電施設等でのタービンブレードの破 損・飛散による衝突と火災、あるいは航空機の衝 突による火災などの事故事例があるように 4⁾⁻⁶⁾、 衝突作用後の構造物の内部あるいは外部において、 燃料・油などの可燃物の燃焼による火災が発生す る可能性がある。衝突後の火災から構造物内の人 命や財産を守るには、衝突作用とその後の火災作 用の双方に対して、部材・構造体の構造安定性を

確保するとともに、火災区画以外への延焼や屋外 から屋内への延焼を防止しなければならない。そ のためには、局部破壊したコンクリート構造体が 火災加熱を受けた場合の温度性状や構造耐火性を 把握する必要がある。

本報では、衝突作用後に火災を受けるコンクリ ート構造物の安全性評価手法の構築に資するべく、 高速衝突を受けたコンクリート造壁の遮熱性と構 造耐火性を把握すること、およびこれらの性能に 対する短繊維補強の効果を確認することを目的と して実施した、実験的検討^{7,8)}について報告する。 本検討は、コンクリート造壁に対する高速衝突実 験と耐火実験で構成される。

2.実験方法

2.1 試験体

試験体は、遮熱性検討用のコンクリート板試験 体(以下、CPと略す)と構造耐火性検討用の鉄筋コ ンクリート造壁縮小試験体(以下、RWと略す)の2 種類とした。

2.1.1 使用材料

表-1 に試験体に用いた普通コンクリートの使 用材料を示す。使用した材料は、普通ポルトラン ドセメント、硬質砂岩砕石、山砂、および混和剤 である。また、ポリプロピレン短繊維(以下、PP 短繊維と略す)を耐衝撃性能の向上³⁾および火災時 の爆裂抑制⁹⁾を目的として使用した。

表-2 にコンクリートの調合、圧縮強度および 耐火実験時の含水率を示す。使用したコンクリー トは、設計基準強度 24N/mm²で計画し、水セメ ント比は 55.0%、目標空気量は 5%とした。調合 は4種類であり、Plain は短繊維無混入、P20-05

表-1 コン	クリ	ート	の使用材料
--------	----	----	-------

材料	種類・物性など						
セメント	普通ポルトランドセメント 密度:3.16g/cm ³						
粗骨材	硬質砂岩(砕石2005, 青梅産),表乾密度:2.65g/cm ³						
細骨材	山砂(君津法木産山砂),表乾密度:2.63g/cm ³						
混和剤	AE減水剤(標準形(I種)),AE剤(I種),空気量調整剤						
短繊維	ボリブロビレン 長さ:10mmまたは20mm, 直径:0.048mm (PP) 密度:0.91g/cm ³ , 引張強度:298N/mm ²						

表-2 コンクリー	トの調合・	圧縮強度・	含水率
-----------	-------	-------	-----

調合名	試験体 W/C		単位量 (kg/m ³)			PP	圧縮強度 (N/mm ²)		含水 率	
	29-1	(%)	W	С	S	G	(vol%)	28日	耐火時	(%)
Plain	CP						0.0	33.1	41.0	1
Plain	RW						0.0	35.2	45.9	3.7
P20-05	CP	55.0	175	318	817	973	0.5	31.2	40.0	3.3
P20-10	CP						1.0	28.3	34.3	3.1
P10-10	RW						1.0	24.7	30.6	4.1

注)W:水,C:セメント,S:細骨材,G:粗骨材

と P20-10 は繊維長 20 mm の PP 短繊維をそれぞ れ 0.5vol%、1.0vol%混入した。P10-10 では、施 工性を考慮して、繊維長 20mm とほぼ同等な耐衝 撃性能が得られることを確認した³⁾、繊維長 10mm の PP 短繊維を 1.0vol%混入した。

使用した鉄筋は異形棒鋼 D6(SD295A)であり、 降伏点強度の実測値は 342N/mm² であった。

2.1.2 試験体の形状・寸法

図-2に CP 試験体の形状・寸法を示し、図-3 に RW 試験体の形状・寸法を示す。本実験で使用 した高速衝突実験装置と同じ装置を使用した既往 の研究^{2),3),10)}では、厚さ 80mm の試験体に対して 多くの実験が行われており、破壊モードの予測が 可能であることから、CP 試験体と RW 試験体の 厚さも 80mm とした。

1) CP 試験体

CP 試験体は、高さ:500mm×幅:500mm×厚 さ:80mm であり、鉄筋補強「なし」と「あり」 の2 種類の仕様とした。鉄筋コンクリート板は、 100mm 間隔の格子状に鉄筋を配し、ダブル配筋 とした。かぶり厚さは10mm とした。

2) RW 試験体

RW 試験体は、高さ:800mm×幅:300mm× 厚さ:80mmであり、壁厚と高さの比は1/10とし た。軸方向に主筋 D6 を 8 本配し、かぶり厚さは 15mmとした。主筋の端部は試験体の上・下端の 載荷板(厚さ12mm、SS400)に溶接して固定した。 主筋には、図-3 に示す F1~F6 および B1~B6 の位置に熱電対を取り付けた。

2.1.3 試験体の種類と実験条件

表-3 に試験体の種類と実験条件を示す。衝突 条件は、衝突なし、および衝突速度を 215m/s と 315m/s とした。衝突速度は、既往の実験 ^{2),3),10)} をもとに設定したもので、Plain を使用した無筋

図-4 高圧空気式飛翔体発射装置の概要 10)

の CP 試験体の局部破壊モードが、215m/s では表 面破壊、315 m/s では裏面剥離となる速度である。

2.2 高速衝突実験

2.2.1 実験装置

高速衝突実験には、図-4 に示す高圧空気式飛 翔体発射装置 10)を使用した。飛翔体および RW 試 験体の設置状況を写真-1 に示す。本装置は、圧 縮器・増圧器・エアチャンバー・発射管(長さ12m、 内径 35mm)で構成されており、圧縮空気で飛翔体 を発射・加速する。衝突速度は発射口に設置した レーザー式速度検出センサーで測定される。本実 験では、先端形状が直径 25mm の半球型で質量 46gの鋼製(SS400)の飛翔体を使用した。

2.2.2 試験体の支持方法

写真-1 に示すように、RW 試験体は、剛飛翔 体の衝突位置(図-3)から上下に 20cm 離れた位置 で、鋼製フレームと木製合板を介してクランプで 固定した。CP 試験体も、同様な方法で衝突面の 上縁と下縁を固定した。

2.2.3 測定項目

剛飛翔体の発射速度、表面破壊の貫入深さと直 径、裏面剥離の深さと直径を測定した。なお、表 面破壊と裏面剥離の直径は、破壊面の最大・最小・ 中間程度の長さの測定値を平均して求めた。深さ は破壊部の最大深さとした。

2.3 CP 試験体に対する遮熱性実験

2.3.1 実験装置

遮熱性実験には、都市ガスを燃料とする小型壁 炉を使用した。炉にはバーナーが4基、炉内温度 測定用の熱電対が 5 本設置されている。写真-2 に実験装置と試験体の設置状況を示す。試験体に 対する有効加熱範囲は 450mm×450mm である。

2.3.2 加熱条件

試験体に飛翔体が衝突した面を加熱面とし、裏 面は炉外の常温空気に暴露される条件とした。加 熱温度条件は、燃料火災を想定して、炭化水素火 災を模した標準加熱温度時間曲線¹¹⁾(以下、H.C. 曲線と略す)にしたがった2時間加熱とした。

2.3.3 測定項目

測定項目は炉内温度 5 点(試験体加熱表面から 100mm の位置で測定)と試験体の裏面温度とし、 裏面温度は赤外線サーモグラフィで測定した。

2.4 RW 試験体に対する載荷加熱実験

2.4.1 実験装置

載荷加熱実験には、小型壁炉と加力装置で構成 される実験装置を使用した。実験装置を図-5に、 試験体の設置状況を写真-3に示す。小型壁炉は CP 試験体の遮熱性実験に使用したものと同じも のである。加力装置は自己釣り合い型の鋼製フレ ームの内側上部に1000kN荷重計と球座、下部に 500kN オイルジャッキと球座が取り付けられて いる。試験体は、加力装置上下の球座の載荷板と 試験体の載荷板をボルトで接合して支持した。

2.4.2 載荷条件

加熱に先立って、中心軸圧縮力を試験体に作用 させ、加熱中は試験体が破壊するまで一定に保持 した。中心軸圧縮力は、Plain と P10-10 の載荷加 熱実験時における圧縮強度の実測値(σ_b)を用いて 次のように設定した。

Plain: σ_b×断面積/3

=45.9N/mm²×24000mm²/3=367.2 kN P10-10:σ_b×断面積/3

= 30.6N/mm² \times 24000mm²/ 3= 244.8 kN

2.4.3 加熱条件

遮熱性実験と同様に、試験体に飛翔体が衝突し

た面を加熱面とし、裏面は炉外の常温空気に暴露 される条件とした。加熱は、H.C.曲線にしたがっ て行い、試験体が破壊した時点で中止した。

2.4.4 測定項目

試験体内部の鉄筋温度 12 点(図-3)、および炉 内温度 5 点、裏面温度 3 点、載荷方向の変位 4 点 と面外方向の変位 6 点(図-5)を測定した。

3. 実験結果

3.1 高速衝突実験

表-4 に、実験時における飛翔体の衝突速度の 実測値、表面破壊の貫入深さと平均直径、および 裏面剥離深さと平均直径を示す。また、図-6 と 図-7 に後述の耐火実験結果と併せて、衝突実験 後の CP 試験体の局部破壊の状況を示し、図-8 に RW 試験体の局部破壊の状況を示す。

写真-2 加熱実験装置と試験体設置状況

写真-3 載荷加熱実験装置と試験体設置状況

表-4 高速衝突実験結果

試験体	衝突速	度(m/s)	表面破	壞(mm)	裏面剥離(mm)	
	設定	実測	最大深さ	平均直径	最大深さ	平均直径
CP-PL-2	215	216	16	96	0	0
CP-PL-3	315	313	22	109	33	230
CP-RC-2	215	214	14	71	0	0
CP-RC-3	315	315	21	117	28	215
CP-P05-2	215	216	18	81	0	0
CP-P05-3	315	315	29	117	0	0
CP-P10-2	215	211	16	86	0	0
CP-P10-3	315	315	29	95	0	0
RW-PL-0	-		-			
RW-PL-2	215	212	15	86	0	0
RW-P10-0	_	_	_	_	_	_
RW-P10-2	215	214	18	66	0	0
RW-P10-3	315	305	22	79	37	177

	衝突後(加熱前) 加熱中の裏面の状況(上:赤外線サーモグラフィの熱画像、下:写真) 加熱後								
試験体	上 : 衝突面 下 : 裏面	20 分	40分	60 分	120分	温度 スケール	上:衝突面 下:裏面		
CP- PL- 2						°C 340 - 300 - 260 - 220 - 180 - 140			
	0					- 100 - 60 - 20	n n		
CP- RC-			11			^{°C} 340 - 300 - 260 - 220 - 180			
2					ත් ක් ඉ දා	- 140 - 100 - 60 - 20			
CP- P05-	PP20-05-3	X				- 300 - 260 - 220 - 180			
2			21 E			- 140 - 100 - 60 - 20			
СР- Р10-	00-20-3					- 300 - 260 - 220 - 180			
2					D D D D D D D D D D D D D D D D D D D	- 140 - 100 - 60 - 20			
	衝突後(加熱前)・加熱中・加熱後の試験体								
$ \begin{array}{c} 300 \\ (1) \\ (2) $									
	[CP+PL-2] [CP+KC-2] [CP+P05-2] [CP+P10-2] 裏面の高さ中央水平方向の温度分布								

(◦ : 円状ひび割れ(斜めひび割れ)外側の最高温度、□ : 円状ひび割れ内側の最低温度)

図-6 CP 試験体(衝突速度: 215m/s)の高速衝突実験後と耐火実験時の状況および裏面温度分布

	衝突後(加熱前)	(加熱前) 加熱中の裏面の状況(上:赤外線サーモグラフィの熱画像、下:写真)							
試験体	上 : 衝突面 下 : 裏面	20 分	40 分	60分	120 分	温度 スケール	上:衝突面 下:裏面		
CP- PL- 3						°C 340 - 300 - 260 - 220 - 180 - 140 - 100 - 60 - 20			
CP- RC- 3						°C 340 - 300 - 260 - 220 - 180			
				1 H					
CP- P05	Mar as . 4			0		- 340 - 300 - 260 - 220 - 180			
-3					11 U 17 D	- 140 - 100 - 60 - 20			
CP- P10 -3	P130-00-4			C		- 300 - 260 - 220 - 180			
						- 140 - 140 - 100 - 60 - 20			
400		;	衝突後(加熱前)・カ	叩熱中・加熱後の	試験体				
400	400 400 400 400 100								

- (◦ : 円状ひび割れ(斜めひび割れ)外側の最高温度、□ : 円状ひび割れ内側の最高温度)
- 図-7 CP 試験体(衝突速度:315m/s)の高速衝突実験後と耐火実験時の状況および裏面温度分布

封驗休	高速衝突	実験後		載荷加熱実験後				
武司(元)	衝突面	裏面	衝突面(加熱面)	裏面	側面(右側加熱面)	側面拡大		
RW- PL- 0		2.44						
RW- PL- 2								
RW- P10- 0		THREE		-Type2. ++++++++++++++++++++++++++++++++++++				
RW- P10- 2		Type2						
RW- P10- 3		Type2		injust in the second seco				

図-8 RW 試験体の高速衝突実験後と耐火実験後の状況

3.1.1 CP 試験体

衝突速度 215m/s の CP-PL-2 と CP-RC-2 では 表面破壊のみが生じ、衝突速度 315m/s の CP-PL-3 と CP-RC-3 では裏面剥離が生じた。無筋の CP-PL シリーズと有筋の CP-RC シリーズでは、衝突速 度が同じ場合、ほぼ同等な局部破壊性状であり、 鉄筋の有無は影響しない結果となった。

短繊維補強した CP-P05 および CP-P10 シリー ズでは表面破壊のみが生じたが、衝突速度 315m/s の場合には試験体裏面にひび割れが視認され、 215m/s ではひび割れは認められなかった。このよ うに、裏面剥離やひび割れが抑制された理由は、 PP 短繊維の架橋効果であると考えられる。本実験 において、短繊維補強が局部破壊の抑制に有効で あることが確認された。

3.1.2 RW 試験体

衝突速度 215m/s の RW-PL-2 は CP-PL-2 と CP-RC-2 と同様に、RW-P10-2 は CP-P05-2 と CP-P10-2 と同様に、表面破壊のみが生じた。し かし、衝突速度 315m/s の RW-P10-3 は、CP-P05-3 と CP-P10-3 では裏面剥離が生じなかったのに対 して、裏面剥離が生じた。RW-P10-3 で裏面剥離 が生じた原因を本実験結果のみで解明することは できないが、裏面剥離の直径から判断して、衝突 作用に対する押抜きせん断力に抵抗する押抜きせ ん断面(図-1 の斜めひび割れ面)が、CP-PL-3 や CP-RC-3 と比較して小さくなっていることから、 試験体の幅が影響した可能性が考えられる。

3.2 耐火実験

3.2.1 炉内温度の測定結果

図-9に、CP試験体の遮熱性実験およびRW試験体の載荷加熱実験における炉内温度の測定結果 を示す。炉内温度は、加熱初期においてH.C.曲線 よりも若干低くなったが、加熱開始後約7分経過 した時点から、概ねH.C.曲線と同等な温度で制御 された。なお、RW 試験体の炉内温度測定結果に おいて、高温維持期間が異なっているのは、試験 体が破壊した時点で加熱を中止したためである。

3.2.2 CP 試験体の遮熱性

加熱による損傷

図-6と図-7に示すように、加熱・冷却期間を 通じて、加熱面と裏面において外見上の損傷の拡 大は認められなかった。加熱初期には、コンクリ ートの含有水が裏面から放射状および円状に湧出 した。この湧水は、飛翔体の衝突によって衝突位 置から裏面に向かって形成された放射状ひび割れ と押抜きせん断によるコーン状のひび割れ(図-1 の斜めひび割れあり、以下、斜めひび割れまたは 円状ひび割れと称す)を通じて生じたと考えられ る。円状の湧水は衝突速度 315m/s の試験体で顕 著であることから、衝突速度が速くなると斜めひ び割れを生じる可能性が高くなると言える。

2) 裏面剥離を生じなかった試験体の裏面温度

CP-P05-2の40分時におけるひび割れ部の裏面 温度、および CP-P05-3の40分時における表面破 壊の真裏の裏面温度が若干高くなっているが、そ の他の試験体では40分時以降の裏面温度に対す る表面破壊とひび割れの影響はほとんど見られな い。また、円状ひび割れの外側よりも内側の方が 裏面温度は低くなっており、斜めひび割れが熱抵 抗になったと言える。なお、裏面温度が100℃以 下のレベルである20分時において、ひび割れ部の 温度が20~30℃程度高くなったのは、裏面のコン クリートよりも温度の高い水が湧出したためであ る。以上のように、本実験では、高速衝突によっ て生じた表面破壊やひび割れは、遮熱性に対して 顕著な影響を及ぼさなかった。

3) 裏面剥離を生じた試験体の裏面温度

CP-PL-3 と CP-RC-3 の裏面温度は、裏面剥離 を生じなかった試験体に比べると 120℃程度高く なった。裏面剥離を発生させないことが遮熱性の 確保に重要であることが確認された。

3.2.3 RW 試験体の構造耐火性

各試験体の載荷加熱実験前後の状況を図-8 に 示す。また、試験体の高さ中央における加熱側お よび裏面側の主筋平均温度(図-3、F1 と F4 の 平均、B1 と B4 の平均)の経時変化を図-10 に示 し、鉛直変位と試験体高さ中央の面外変位の経時 変化を図-11 に示す。変位は、中心軸圧縮力導入 後の加熱開始直前の変位をゼロとして図示した。

各試験体の崩壊時間は次のとおりであった。

RW-PL-0: 42.5 分 RW-PL-2: 31.5 分 RW-P10-0: 42.5 分 RW-P10-2: 36.5 分 RW-P10-3: 37.5 分

なお、高速衝突実験による試験体の残留変形は 極めて小さかったことから、残留変形が試験体の 荷重支持性能に及ぼした影響は、表面破壊や裏面剥 離の影響に比べて、小さかったと考えられる。 構造挙動

加熱開始後、試験体には膨張方向の鉛直変位と 加熱側に凸の面外変位を生じた。これは、加熱側 のコンクリートの方が裏面側よりも高温になり、 熱膨張量が大きいためだと言える。その後、加熱 が進むに従い、鉛直変位は収縮方向に転じるとと もに、面外変位は、加熱側に凸から、裏面側に凸 の方向に転じた。これは、加熱側のコンクリート がさらに高温になって、圧縮強度とヤング係数が 低下したこと、それに伴い、部材の等価断面にお ける重心が裏面側に移動して、偏心による曲げが 発生したためだと言える。そして、裏面側に凸の 面外変位が増加することによって、 $P-\delta$ 効果に よる曲げモーメントが増加し、加熱側のコンクリ ートが圧壊して崩壊に至った。

2) 表面破壊等の影響

RW-PL-0 と **RW-P10-0** は崩壊時間が同じで あった。これに対して、**RW-PL-2** の崩壊時間は 11分、**RW-P10-2**は6分早くなっており、表面破 壊によって、火災時の耐力低下が早くなることが 確認された。また、**RW-PL-2** と **RW-P10-2** の表

面破壊の規模は概ね等しいことから、双方の崩壊 時間の差異は、高速衝突によって試験体内部に生 じたひび割れの影響だと考えられる。図-8の衝 突実験後の写真で、RW-PL-2の裏面には放射状と 円状のひび割れが見られるが、RW-P10-2では見 られない。本結果から、短繊維補強は、高速衝突 によるひび割れ等の損傷を低減し、その結果とし て、構造耐火性の向上にも寄与することが把握さ れた。

3) 裏面剥離等の影響

裏面剥離を生じた RW-P10-3の崩壊時間は、高 速衝突による断面欠損が大きいにもかかわらず、 RW-P10-2 と1分程度の差であった。この結果か ら、崩壊に至る原因として、軸剛性よりも曲げ剛 性の低下の方が支配的だったと考えられる。すな わち、両者とも面外変位の経時変化は同傾向であ り、片面加熱によって P-δ効果による曲げモー メントが増大し、加熱側のコンクリートが圧壊し て崩壊した。加熱が進行すると裏面側には引張応 力が作用するが、コンクリートは引張強度が小さ いため、裏面剥離が生じていても曲げ剛性は大き く変わらない。このため、裏面剥離が崩壊時間に 対して大きく影響しなかったものと考えられる。

4. まとめ

剛飛翔体の高速衝突を受けたコンクリート造壁 の遮熱性と構造耐火性を把握すること、およびこ れらの性能に対する短繊維補強の効果を確認する ことを目的として、高速衝突実験と耐火実験を実 施した。その結果、本実験の範囲では、以下の知 見が得られた。

1) 短繊維補強の有効性

PP 短繊維補強は、耐衝撃性能の向上に有効であ り、コンクリート内部のひび割れの低減や裏面剥 離の抑制に効果がある。その結果、火災加熱に対 する遮熱性と構造耐火性の向上にも寄与する。

2) 遮熱性

表面破壊および衝突位置から裏面にかけて形成 された放射状ひび割れと斜めひび割れは、コンク リート板の遮熱性に大きな影響を及ぼさない。斜 めひび割れは、熱抵抗となって裏面の温度上昇を 抑制する。裏面剥離を防止することは遮熱性を確 保する上で重要である。

3) 構造耐火性

鉄筋コンクリート造壁は、加熱側のコンクリートの強度と剛性の低下による曲げ変形の増大によって崩壊する。表面破壊および試験体内部に生

じたひび割れは、崩壊時間を早める原因となる。 崩壊に至る過程において、試験体は裏面側に凸に 湾曲し、裏面側は引張状態となるため、裏面剥離 は崩壊時間に大きく影響しない。

謝辞

本研究の実施にあたり、防衛大学校教授 別府万寿 博先生、千葉工業大学教授 鈴木誠先生から懇切丁寧 なるご指導を戴いた。ここに深謝の意を表します。

<参考文献>

- 1) 土木学会構造工学委員会衝撃問題研究小委員会:構造物の衝 撃挙動と設計法、構造工学シリーズ6、1994.
- 防衛施設学会:高速衝突を受けるコンクリート構造物の局部 破壊に対する設計ガイドライン(案)、2014.
- 3) 森田武、別府万寿博、鈴木誠:高速衝突を受けるポリプロピレン短繊維補強コンクリートの耐衝撃性能、日本建築学会構造系論文集、第78巻第684号、pp.319-327、2013.
- "Turbine risks reassessed," Nuclear Engineering International, Vol.39, No.476, pp.42-44, 1994,
- Mlakar, P.E., Dusenberry, D.O., Harris, J.R., Haynes, G., Phan, L.T. and Sozen, M.A.: The Pentagon Building Performance Report, American Society of Civil Engineers, Technical Reports, 2003.
- 6) Gross, J.L. and McAllister, T.P.: Structural Fire Response and Probable Collapse Sequence of the World Trade Center Towers, National Institute of Standards and Technology, Report NIST NCSTAR 1-6, WTC Investigation, 2005.
- 7) 森田武、別府万寿博、鈴木誠:高速衝突を受けたコンクリート板の火災加熱に対する温度性状、日本建築学会構造系論文 集、第78巻第694号、pp.2247-2256、2013.
- 8) 森田武、別府万寿博、鈴木誠:剛飛翔体の高速衝突を受けた 鉄筋コンクリート造壁の構造耐火性に関する実験的検討、日本建築学会構造系論文集、第80巻第708号、pp.357-367、 2015.
- Morita, T., Nishida, A., Yamazaki, N., Schneider, U. and Diederichs, U.: An experimental study on spalling of high strength concrete elements under fire attack, Fire Safety Science - Proceedings of the Sixth International Symposium on Fire Safety Science, pp.855-866, 1999.
- 10) 別府万寿博、三輪幸治、大野友則、塩見昌紀:鋼製剛飛翔体の高速衝突を受けるコンクリート板の局部破壊に関する実験的研究、土木学会論文集、Vol.63、No.1、pp.178-191、2007.
- EUROCODE 1: Basics of design and actions on structures Part 2-2: Actions on structures exposed to fire, European Committee for Standardization, 1994.