洋上風力発電設備支持構造物のための極値波高算定式

嶋田 健司

(技術研究所)

Extreme Wave Height Formula for a Substructure of an Offshore Wind Turbine

Kenji Shimada

本論文では、浅水域に建設される洋上風力発電設備支持構造物の設計のための極値波高を、合田モデルによって IEC61400-3に規定される超過確率に整合するように求め、その結果に基づいて合田によって提案された防波堤のための 波高算定式を修正することで、洋上風車の支持構造物のための極値波高算定式を提案した。また、衝撃砕波力の作用の 目安となる初期砕波水深を求め、その近似式を作成した。さらに、IEC61400-3の Battjes & Groenendijk による極値波 高と合田モデルの極値波高を比較し、両者の整合性を検討した。

The extreme wave height for design of an offshore wind turbine located in shallow water zone is calculated based on Goda's theoretical wave deformation model in accordance with requirement of exceedance probability specified in IEC61400-3. Goda's approximation formula for the maximum wave height is adjusted for estimation of the extreme wave height with exceedance probability in IEC61400-3. Furthermore, incipient depth of wave breaking and its approximation formula are obtained. Comparisons are conducted between the extreme wave heights by the Battjes & Groenendijk's wave model and the Goda's wave model.

1.はじめに

IEC61400-3(以下 IEC 基準)等の海外の規基準 類 ^{1),2)}では極値波高は長期間にわたる波高、波周 期と波向きの海象データに基づき求めるものと定 めている。一方、十分な期間のデータがない場合 には、水面変動にレイリー分布を仮定し、次式に よって極値波高を求めてもよいとしている。

$$H_{T_p} = 1.86 H_{sT_p}$$
 (1)

ここに H_{sT_R} は評価時間 3 時間のスペクトル有義波高の T_R 年再現期待値である。式(1)は超過確率 1/1000の波高であり、近似的に個別波高 1000 波の最高波高の最頻値で表すことができる(表-A1 参照)。

水深が深く、波浪変形や砕波の影響が小さい場合、 レイリー分布を仮定して極値波高を求めることは妥 当であり、式(1)によって極値波高を求めることがで きる。しかし、深水域の波は浅水域に入ってくるに つれて、浅水効果によって波高の増大を伴い、砕波 によって波高の大きい波では波高の減衰が生じ、波 高の確率分布はレイリー分布から逸脱する。そのた め、浅水域では特に超過確率が小さい波の波高は波 浪変形モデルを用いて波高を評価する必要があり、 IEC 基準では Battjes & Groenendijk モデル^{3),4)}(以 下 BG モデル)が、我が国では、土木学会の風力発電 設備支持物構造設計指針・同解説⁵⁾で合田モデル^{6),7)} が用いられている。

一方、DNV・GL指針²⁰およびJIS 規格⁸は、BG モデルが室内水槽実験によるほんの数ケースのデー タによってモデルが決められていること、実測によ る検証がなされていないこと等の問題を指摘してい る。DNV・GL指針は、BGモデルの使用に際して はサイトでの実測データによって妥当性を検証する ことという条件を付けている。JIS 規格は BGモデ ルが浅水効果を陽的に考慮していないことを指摘し ている。後述するように BGモデルは数学的フィッ ティングであり、浅水効果や砕波効果はフィッティ ングの対象としたデータを通じて陰に考慮されてい るが、合田モデルは後述するようにこれらを理論的 に考慮している。

上記のように現行 IEC 波高モデルに比べ、合田モ デルの有用性は明らかであり、合田モデルによって IEC 基準に整合する極値波高算定法を示すことは、 極値波高算定の精度向上に寄与するものと考えられ る。一方、Goda⁹⁰はBGモデルと合田モデルを比較 し、BGモデルはモデルパラメータが急変すること により中程度の水深で極値波高を過小評価する傾向 があることを述べているが、明確に極値波高を示し た上で結論を導いているわけではない。以上のよう な背景を踏まえて、本論文では合田モデルによる極 値波高を明確に示し、BGモデルとの比較を行う。

本論文の第2章では波浪変形モデルについて、BG モデルと合田モデルの波高算定方法の概略について 述べる。第3章では合田モデルの精算法を用いて IEC基準に整合する極値波高を求め、その結果に基 づいて極値波高の略算式を作成するとともに、IEC 基準で採用されている制約付き波浪法を用いる場合 の注意点について述べる。さらに、衝撃砕波力を考 慮するための水深のひとつの目安として、初期砕波 水深の計算式を示す。第4章ではBGモデルと合田 モデルの比較方法を示し、両モデルによる極値波高 について比較検討する。第5章では本論文から得ら れた結論について述べる。なお、本論文は既出の文 献¹⁵⁾について以下の二点に関して加筆修正したも のである。

- ・ 極値波高略算式の係数を一部修正
- ・ 極値波高に対する初期砕波水深の計算式を追加

2. 波高算定モデル

2.1 Battjes & Groenendijk モデル

BG モデルは一定な海底勾配の砕波帯内の波高の 確率分布を次式のように混合ワイブル分布によって 表している。

$$F_{\underline{H}}(H) = \Pr\{\underline{H} \le H\}$$

$$= \begin{cases} F_1(H) = 1 - \exp\left[-\left(\frac{H}{H_1}\right)^{k_1}\right] & H \le H_{tr} \\ F_2(H) = 1 - \exp\left[-\left(\frac{H}{H_2}\right)^{k_2}\right] & H > H_{tr} \end{cases}$$
(2)

ここで、 H_{tr} は遷移波高、 $H_1 \ge H_2$ はスケールパラ メータである。 $k_1 \ge k_2$ は それぞれ $H \le H_{tr}$ では $k_1 = 2$ (すなわちレイリー分布)、 $H > H_{tr}$ では $k_2 = 3.6 \ge 1$ している。評価対象地点の水深h、海底 勾配 tan θ 、水面変動の標準偏差 σ_{ζ} に対して、rms 波高 H_{rms} と遷移波高 H_{tr} は室内水槽実験に基づい て次式のように近似されている。

$$H_{rms} = \left(2.69 + 3.24 \,\sigma_{\zeta} \,/ h\right) \sigma_{\zeta} \tag{3}$$
$$H_{tr} = \left(0.35 + 5.8 \tan \theta \right) h \tag{4}$$

スケールパラメータは次式を解いて求める。

$$\begin{cases} \left(\frac{\tilde{H}_{tr}}{\tilde{H}_{1}}\right)^{2} = \left(\frac{\tilde{H}_{tr}}{\tilde{H}_{2}}\right)^{3.6} \\ 1 = \sqrt{\tilde{H}_{1}^{2}\gamma_{1}} \left[2, \left(\frac{\tilde{H}_{tr}}{\tilde{H}_{1}}\right)^{2}\right] + \tilde{H}_{2}^{2}\gamma_{2} \left[\frac{2}{3.6} + 1, \left(\frac{\tilde{H}_{tr}}{\tilde{H}_{2}}\right)^{3.6}\right] \end{cases}$$
(5)

ここで、 $\tilde{H}_{tr} = H_{tr}/H_{rms}$ 、 $\tilde{H}_1 = H_1/H_{rms}$ 、 $\tilde{H}_2 = H_2/H_{rms}$ である。また、 $\gamma_1(a,x)$ および $\gamma_2(a,x)$ は第一種および第二種の不完全ガンマ関数である。

超過確率が1/Nの無次元波高 $\tilde{H}_{1/N} = H_{1/N}/H_{rms}$ は、 レイリー分布で決まる超過確率が1/Nの無次元波高

$$\tilde{H}_{1/N,1} = \tilde{H}_1 \left[\ln\left(N\right) \right]^{\frac{1}{k_1}} \tag{6}$$

と \tilde{H}_{tr} との大小関係によって次式のようになる。

$$\tilde{H}_{1/N} = \tilde{H}_2 \left[\ln \left(N \right) \right]^{\frac{1}{k_2}} \quad (\tilde{H}_{tr} \le \tilde{H}_{1/N} \ \mathcal{O} \ \text{$!$$$$!$$$$!} \text{$!$} \text{$!$}$$

無次元 1/N 最大波高 $\tilde{\tilde{H}}_{1/N} = \bar{H}_{1/N} / H_{rms}$ も同様に次式のようになる。

$$\begin{split} \tilde{H}_{tr} > \tilde{H}_{1/N,1} \mathcal{O} \\ \stackrel{}{\mathcal{H}_{0}}{\tilde{H}_{1/N}} = N \int_{\tilde{H}_{1/N}}^{\tilde{H}_{tr}} \tilde{H}_{f_{1}} \Big(\tilde{H} \Big) d\tilde{H} + N \int_{\tilde{H}_{tr}}^{\infty} \tilde{H}_{f_{2}} \Big(\tilde{H} \Big) d\tilde{H} \\ &= N \tilde{H}_{1} \Bigg(\gamma_{2} \Bigg[\frac{1}{k_{1}} + 1, \ln\left(N\right) \Bigg] - \gamma_{2} \Bigg[\frac{1}{k_{1}} + 1, \Bigg(\frac{\tilde{H}_{tr}}{\tilde{H}_{1}} \Bigg)^{k_{1}} \Bigg] \Bigg) \\ &+ N \tilde{H}_{2} \gamma_{2} \Bigg[\frac{1}{k_{2}} + 1, \Bigg(\frac{\tilde{H}_{tr}}{\tilde{H}_{2}} \Bigg)^{k_{2}} \Bigg] (9) \\ \tilde{H}_{tr} \leq \tilde{H}_{1/N,1} \mathcal{O} \\ \stackrel{}{\mathcal{H}_{0}} \\ \end{split}$$

$$\tilde{\tilde{H}}_{1/N} = N \int_{\tilde{H}_{1/N}}^{\infty} \tilde{H} f_2\left(\tilde{H}\right) d\tilde{H}$$

$$= N \tilde{H}_2 \gamma_2 \left[\frac{1}{k_2} + 1, \ln\left(N\right) \right]$$
(10)

ここで、 $\tilde{H}_{1/N,1} = \tilde{H}_{1/N}$ 、 f_1 および f_2 はそれぞれ確率 密度関数 $f_i(H) = dF_i(H)/dH(i=1,2)$ である。

文献^{3),4)}および現行の IEC 基準の Annex C では 種々の \tilde{H}_{tr} に対して、超過確率1/Nの波高として $H_{1/50}$ 、 $H_{1/100}$ 、 $H_{1/1000}$ あるいは1/N最大波高として $\bar{H}_{1/3}$ 、 $\bar{H}_{1/10}$ が数表として与えられている。

2.2 合田モデル

砕波帯内の波高は、合田 ^{6,7}による一定な海底勾 配の不規則波の砕波変形モデル(以下、合田モデル) から求めることができる。合田モデルに関しては文 献 ⁶⁰で詳述されているので、以下では概要のみ述べ る。

合田モデルの特長は、砕波帯内の平均水位の変化 (wave setup と wave setdown と、サーフビートに よる長周期水位変動)と浅水変形効果を考慮した選 択的砕波モデルを用いている点である。

波高の確率密度分布は図-1のようになる。ここで、Hは波高、 $H_{b1} \ge H_{b2}$ は次式の砕波限界波高である。

$$H_b = AL_0 \left\{ 1 - \exp\left[-1.5 \frac{\pi h}{L_0} \times \left(1 + K \tan^s \theta \right) \right] \right\}$$
(11)

図-1 合田の不規則砕波モデル 6)

ここで、 $A = 0.18(H = H_{b1})$ 、 $A = 0.12(H = H_{b2})$ 、 K = 15、s = 4/3、 L_0 は沖波波長である。深海域で は波高はレイリー分布 $p_0(H)$ で近似される(図-1(1))。波が浅海域へ進行したとき、砕波限界波高 H_{b1} を超える波高の波はすべて砕波すると考える。 ただし、砕波は波高のある幅 $H_{b2} \sim H_{b1}$ にわたって 生じ、その範囲内では波高は直線的に変化すると仮 定する($\mathbf{Q} - \mathbf{1}(2)$)。この結果、砕波しない波の波高 分布は $\mathbf{Q} - \mathbf{1}(3)$ に示す $p_r(H)$ のようになる。砕けた 波は、エネルギーの一部を失って波高の低い波に、 残存部の確率密度に比例した確率で分布するとみな して再生されp(H)になると仮定する($\mathbf{Q} - \mathbf{1}(4)$)。

また、不規則波の砕波変形を論ずるときには、波 高減衰と水位変化を同時に関連させて解かなければ ならない。このために合田モデルでは、規則波の平 均水位の上昇量に関する微分方程式¹⁰を差分法で 解くことで wave setup と wave setdown を求める。 一方、サーフビートによる平均水位の変動の波高分 布に与える影響は、平均水位の変動の分布に正規分 布を仮定して8つの代表水深の確率密度の和で評価 する。

図-2 には合田モデルによる砕波帯内の波高の例 を、海底勾配が $\tan \theta = 1/10 \ge \tan \theta = 1/100$ の有義波高 $\overline{H}_{1/3} \ge 1/250$ 最大波高 $\overline{H}_{1/250}$ について、また、図-3 には砕波帯内の水深変化について文献 $\oplus \ge \infty$ 計算結 果を示す。なお、図-2(a) (c) には初期砕波水深も併 せて示しているが、これについては **3.4** 節で詳しく 述べる。

図-3 本解析結果の検証(水深変化)

3. 合田モデルによる極値波高の算定式

3.1 極値波高の精算法による算定結果

BG モデルも合田モデルも、任意の超過確率の波 高を求めることができ、IEC 基準では浅水域での極 値波高の超過確率は 1/1000 と規定されている。既 に述べたようにレイリー分布が成立するような深水 域における式(1)と、浅水域については Annex C の BG モデルの例題において、超過確率 1/1000 の波高 H_{0.1%} が示されている。以下では浅水域の極値波高 の超過確率は 1/1000 として議論を進める。

合田モデルの既出の文献では有義波高 $\bar{H}_{1/3}$ と 1/250最大波高 $\bar{H}_{1/250}$ しか与えられていない。Goda⁹⁾ は BG モデルの $H_{1/1000}$ に対し、合田モデルの $\bar{H}_{1/250}$ をレイリー分布を仮定して 1.03 倍したものを比較 すると、BG モデルは合田モデルに比べて、中程度 の水深では極値波高 $H_{1/1000}$ を過小評価していると 述べているが、合田モデルによる極値波高 $H_{1/1000}$ を 明示的に示していない。しかし、洋上風車の支持構 造物の設計では極値波高は最も重要なパラメータで あることから、以下では合田モデルの精算法に厳密 に従って極値波高 $H_{1/1000}$ を求める。

図-4 には合田モデルにより波高の確率密度分布 を求め、それを積分することで求めた超過確率 1/1000の波高 $H_{1/1000}$ を示す。同図には参考までに 1/400最大波高 $\overline{H}_{1/400}$ と1/1000最大波高 $\overline{H}_{1/1000}$ も示 す。砕波を考慮した場合もレイリー分布を仮定した 場合と同様に $\overline{H}_{1/400} \approx H_{1/1000}$ (表-A1参照)である。ま た、定義からも明らかなように、 $\overline{H}_{1/1000}$ は $H_{1/1000}$ に 対して安全側の評価になる。

3.2 IEC 基準に対応する極値波高の略算式

合田は1/N最大波高 $\overline{H}_{1/N}$ を次式で近似した。

$$\frac{\overline{H}_{1/N}}{H'_{0}} \begin{cases} \approx \underbrace{\beta_{K_{s}}K_{s}}_{\textcircled{3}} & :h/L_{0} \ge 0.2 \\ \approx \min\left[\underbrace{\beta_{0} + \beta_{1}\frac{h}{H'_{0}}}_{\textcircled{1}}\right], & :h/L_{0} < 0.2 \\ \underbrace{\beta_{\max}}_{\textcircled{2}}, \underbrace{\beta_{K_{s}}K_{s}}_{\textcircled{3}}\right] & :h/L_{0} < 0.2 \end{cases}$$

$$\beta_{0} = 0.052 (H'_{0}/L_{0})^{-0.38} \exp(20 \tan^{1.5} \theta)$$

$$\beta_{1} = 0.63 \exp(3.8 \tan \theta) \qquad (12b)$$

$$\beta_{\max} = \max\left[1.65, 0.53 (H'_{0}/L_{0})^{-0.29} \exp(2.4 \tan \theta)\right]$$

$$\beta_{K_{s}} = 1.8$$

ここで、 $H'_0 = K_r K_d H_0$ 、 H'_0 は換算沖波、 K_r は屈折 係数、 K_d は回折係数、 K_s は浅水係数、 H_0 は統計 的沖波有義波高である。上式を図示すると**図**-5 の ようになり、砕波帯内の波高分布は、砕波成分を表 す2本の直線と浅水変形を示す1本の曲線によって 表される。 $\beta_0 \ge \beta_1$ は直線①のy切片と傾き、 β_{max} は 直線②で、波高の最大値を表す。曲線③は浅水変形 による波高変化を表す。

極値波高*H*_{1/1000}の略算式も式(12a)の形を踏襲し、 次式のように置く。

$$\frac{H_{1/1000}}{H'_{0}} \begin{cases} \approx 1.03 \times 1.8K_{\rm s} & :h/L_{0} \ge 0.2\\ \approx \min\left[\left(1.03\beta_{0} + \beta_{1}\frac{h}{H'_{0}}\right), & :h/L_{0} < 0.2\\ 1.03\beta_{\rm max}, 1.03 \times 1.8K_{\rm s}\right] \end{cases}$$
(12c)

ここで、乗数 1.03 は、深海域での $H_{1/1000} \ge \overline{H}_{1/250}$ の 関係、すなわち $H_{1/1000} / \overline{H}_{1/250} = 1.86/1.8 ≈ 1.03$ (表 - A1 参照)である。図-6 には $H_{1/1000}$ の精算法と略算式の 比較を示す。同図には BG モデルとの比較も示すが、 これについては第4章で述べる。

図-6 H_{1/1000}の精算法と略算式の比較

 $K_r = K_d = 1$ の場合、風波の波形勾配は $H'_0/L_0 = 0.03$ 弱~0.04強程度、うねりはそれ以下で ある(文献 η の p.40)。図-6にはうねりおよび風波を 代表して $H'_0/L_0 = 0.01 \ge H'_0/L_0 = 0.04$ の場合につい て示す。図中の Approx.は略算式を表すが、うねり に対応する図-6(a)からは略算式は tan $\theta = 1/10$ およ び $\tan \theta = 1/100$ のいずれの海底勾配でも $H_{1/1000}$ 波高 をよく近似していることがわかる。一方、風波に対 応する **図**-6 (b)では海底勾配が小さくなると **図**-5 で①から②へ移行する付近で略算式は過大評価とな るが、合田 0も指摘しているようにこの程度の誤差 はバイリニア近似ではやむをえない。

略算式(12c)の適用範囲は波高の超過確率に依存 する。図-7は $H_{1/1000}$ を横軸を h/L_0 として表し、浅 水係数 K_s を重ね描きしたものである。 $h/L_0 < 0.2$ で バイリニア近似できるのは $H'_0/L_0 \le 0.05$ である。し たがって、 $H_{1/1000}$ では略算式(12)の適用範囲は $H'_0/L_0 \le 0.05$ が妥当であると考えられる。

図-7 $h/L_0 \geq H_{1/1000}$ の関係 (tan $\theta = 1/100$)

3.3 制約付き波浪法を用いる場合の注意点

IEC 基準では、極値波高を用いるシミュレーショ ンには非線形性を考慮した水粒子の運動を用いるこ とが要求されており、制約付き波浪法¹¹¹を用いるこ とが推奨されている。制約付き波浪法は、極値波高 に対応する非線形規則波による波の運動をバックグ ラウンドの線形不規則波に埋め込むことにより、不 規則な波の運動に便宜的に非線形性を取り入れると 同時に、シミュレーションの解析時間を短縮する手 法である。

このとき非線形規則波の計算手法としては、任意 の手法を選びうるが、①海底勾配が再現できるもの、 および、②3.1節および3.2節で示したように、砕 波帯内のピークから汀線にかけての波高に、wave setup による平均水位の上昇およびサーフビートに よる水位変動に伴う波高増大を再現できるものが理 想的である。しかし、それらを考慮しうる解析手法 は現在のところ一般的ではない。

流れ関数法 12),13は一般的な非線形規則波の計算 法であるが、海底勾配がない場合、つまり $\tan \theta = 0$ の 波の運動に対して導かれた理論であるため、条件① を満たさず、また条件②も再現できない。しかし実際は、制約の少なさと簡便さから、流れ関数法が選択されることが多いと想定される。この場合、便宜的であるが、水深を調節して所定の極値波高の波を 再現し、実水深での水粒子の運動はストレッチング 法により調整して求める。

3.4 初期砕波水深

衝撃砕波力を考慮しなければならない水深に関 する研究はこれまで少ない。1つの方法として、合 田による有義波高としての初期砕波水深(文献 η の p.66)を目安とし、それより浅い水深域では何らかの 形で衝撃砕波力を考慮することが考えられる。初期 砕波水深は、浅水効果のみによって評価した波高か ら砕波によって 2%減衰した波高になる水深として 定義され、式(11)の左辺を $H_b = 0.98K_sH'_0$ と置いて水 深について解いたもので、次式のように表される。

$$\overline{h}_{-2\%} = -\frac{L_0}{1.5\pi \left(1 + K \tan^{4/3} \theta\right)} \ln \left(1 - \frac{0.98K_s H_0'/L_0}{A}\right) (13)$$

ここで浅水係数*K*_sも水深の関数であるため、この式 を水深に対して解くには反復収束計算が必要である。

係数 A は、初期砕波水深を求める場合には $A \approx 0.11$ とされている $\overline{\gamma}$ 。図-2(a)(c)にはA = 0.11と して計算した結果を示すが、 $\tan \theta = 1/100$ の場合は水 深を過小評価している。したがって、係数 A につい ては調整を行った。同図にはA = 0.101とした結果を 示すが、両方の海底勾配で概ね一致している。

合田は有義波高の最大値を与える水深については 近似式を示しているが、初期砕波水深については示 していない。式(14)には $\bar{H}_{1/3}/H'_0 = 0.98K_s$ に対して 求めた有義波高に対する初期砕波水深 $\bar{h}_{-2\%}$ の近似 式を示す。ただし $x = \ln(H'_0/L_0)$ および $y = \ln(\tan\theta)$ で、適用範囲は $0.002 \le H'_0/L_0 \le 0.08$ および 1/100 $\le \tan\theta \le 1/10$ である。図-8 には精算法、近似解お よび式(13)によって求めた有義波高に対する初期砕 波水深 $\bar{h}_{-2\%}$ の比較を示すが、式(14)または式(13)で 概ね近似されることがわかる。

$$\overline{h}_{-2\%}/H'_{0} = \sum_{i=0}^{4} a_{i}x^{i}$$

$$a_{0} = -36.15 - 27.474y - 2.8243y^{2}$$

$$a_{1} = -30.9 - 22.916y - 2.3567y^{2}$$

$$a_{2} = -9.8773 - 7.3272y - 0.75418y^{2}$$

$$a_{3} = -1.3948 - 1.0289y - 0.10591y^{2}$$

$$a_{4} = -0.07286 - 0.053969y - 0.0055565y^{2}$$

$$(14)$$

図-8 有義波高に対する初期砕波水深

極値波高に対する初期砕波水深も式(13)と同様な 考え方で式(15)により反復計算で求められ、精算法 との比較は図-9 のようになる。ただしこの場合は *A*=0.152とした。

4. 極値波高の予測モデルの比較

BG モデルと合田モデルの入力パラメータは、水 深hと海底勾配 tan θ は同じであるが、それに加えて BG モデルは設計点における水面変動の分散 σ_{ζ}^2 が、 合田モデルは換算沖波波高 H'_0 が必要であり、両者 は直接比較ができない。比較のためには σ_{ζ} と H'_0 の 対応付けが必要になる。ここで注意しなければなら ないのは、評価対象地点が砕波帯内にある場合には σ_{ζ} には砕波の影響が含まれることである。ちなみ に、IEC 基準の $H_0 = 0.956H_{s0}$ ($H_{s0} = 4\sigma_{\zeta_0}$)の関係は 深水域での水面変動の標準偏差 σ_{ζ_0} と沖波の関係で あり、 σ_{ζ} とは異なるので、これを用いて σ_{ζ} と H'_0 (ま たは $\sigma_{\mathcal{L}} \ge H_0$)の対応付けを行うことはできない。 BG モデルは水面変動の標準偏差 σ_{ζ} を用いて式(3) によって波高の rms 値H_{rms} を求めるが、合田モデ ル(精算法)もH_{ms}を算出することができる。以下で はGoda⁹⁾と同様に合田モデル(精算法)を用いてH_{mm} を求めた。ただし同文献では具体的な比較手順は示 されていない。以下では図-10のようにして極値波 高の比較を行った。まず、図-11 (a)に示すように 3.2節で示した合田モデルで縦軸をH_{rms}/H'₀とした 曲線群を換算沖波波形勾配 H'_0/L_0 をパラメータと して所定の海底勾配について計算する。次に、式(3) を仮定して H_{rms} を求め、傾き H_{rms}/h の直線とこれ らの曲線との交点を求めると、その横軸の値が BG モデルの入力条件 σ_{ζ}^2 に対応する水深換算沖波比と なる。その値を*ξ*とすると、換算沖波波高は $H'_{0} = h/\xi$ として求まり、図-11 (b)に示す極値波高 の図で*と*に対応する波高を求めればそれが BG モデ ルに対応する極値波高となる。ただし、H_{rms}は H'0/L0に依存し、未知数H'0が含まれているが、こ こでは両モデルの比較が目的なので、 H'_0/L_0 は既知 パラメータとして 0.002 ≤ H'₀/L₀ ≤ 0.08 の範囲で与 えた。

図-10 H_{1/N}の比較の流れ

前掲の図-6には h/H'_0 に対して、 $H_{1/1000}$ のBGモデルと合田モデルの比較を示す。細い実線で示すオリジナルのBGモデルは、式(12)の②に相当するピーク値付近で相対的に極値波高を過小評価する傾向があり、その傾向は海底勾配 $\tan \theta$ が小さいほど顕著である。同図には式(4)の遷移波高のパラメータを修正した次式による BG モデルを点線で示す。

$$H_{tr} = (0.5 + 4.5 \tan \theta)h \tag{16}$$

特に海底勾配 $\tan \theta$ が小さい場合に過小評価が改善されている。

図-11 H_{rms}/hからH_{1/1000}を求める手順 (H_{rms}/h=0.38, tan θ=1/100)

図-12 には文献 4^{0} の例題(σ_{ζ}^{2} =1.1×10⁻³m、 h=0.27m、tan θ =1/100)について両モデルの比較を 示す。この例題では、遷移波高以上ではいずれのモ デルもレイリー分布から逸脱しており、砕波の影響 が表れている。遷移波高に式(16)を用いるとこの領 域での BG モデルの過小評価は改善されている。

図-12 H_{1/N}の Battjes & Groenendijk モデルと 合田モデルの比較(H_{ms}/h=0.38, tan θ=1/100)

図-13 には海底勾配をパラメータとして h/H_{rms} に対して、 $H_{1/1000}$ の BG モデルと合田モデルの比を示す。両モデルの大小関係は h/H_{rms} に依存する。ただし、 $h/H_{rms} = 4$ では両者はほぼ一致している。これは $h/H_{rms} = 4$ は砕波による減衰効果がほとんどない深水域であるためである。海底勾配の影響について見ると、遷移波高に式(4)を用いたオリジナルのBG モデルでは海底勾配が小さい tan $\theta = 1/100$ の場合に BG モデルの過小評価が目立つ。遷移波高を式(16)のように修正すると、tan $\theta = 1/100$ の場合は

2.5 < h/H_{rms} < 5 で BG モデルの過小評価は改善されている。

図ー13 $H_{1/1000} O$ Battjes & Groenendijk モデル

と合田モデルの比較

5. まとめ

IEC61400-3 に整合する極値波高算定式について 述べた。本論文の結論は以下のようにまとめられる。

- 合田による一定な海底勾配の不規則波の砕波 変形モデルに基づいて、IEC61400-3の超過確 率に整合する極値波高およびその略算式を求 めた。
- 有義波高および極値波高に対する初期砕波水 深の反復計算式を示した。また、有義波高に対 する初期砕波水深の近似式を求めた。
- 3. Battjes & Groenendijk モデルと合田モデルに よる極値波高を比較した。その結果、砕波帯内 で極値波高がピークを示す付近で、前者は後者 に比べて過小評価する傾向があることを示し た。ただし、遷移波高を高めに修正することで この過小評価は改善されることを示した。

謝辞

東京大学大学院工学系研究科社会基盤学専攻の 石原孟教授と山口敦准教授にはご指導および有益な 議論を賜った。ここに記して謝意を表する。

<参考文献>

- IEC61400-3 Wind turbines Part 3: Design requirements for offshore wind turbines.
- DNVGL-ST-0437, Loads and site conditions for wind turbines, November 2016.
- Groenendijk, H.W. and van Gent, M.R.A., Shallow foreshore wave height statistics; A predictive model for the probability of exceedance of wave heights, Report H3351, WL | Delft hydraulics, The Netherlands, 1998.
- Battjes, J.A. and Groenendijk, H.W., Wave height distributions on shallow foreshores, Coastal Engineering, 40, 2000, pp.161-182.
- 5) 土木学会,風力発電設備支持物構造設計指針・同解説 2010 年版.
- 合田良実: "浅海域における波浪の砕波変形", 港湾技術研究 所報告, Vol.14, No.3, pp.59-106, 1975.
- 7) 合田良実, 耐波工学, 鹿島出版会, 2008.
- 8) 日本工業標準調査会 審議(日本規格協会 発行),風車-第3部:洋上風車の設計要件,JISC1400-3:2014(IEC 61400-3:2009),2014年8月20日制定.
- Goda, Y., Design wave height selection in intermediate-depth waters, Coastal Engineering, Vol.66, 2012, 3-7.
- Longuet-Higgins, M.S. and Stewart, R.W., Radiation stress and mass transport in gravity waves, with application to "surf beats", Journal of Fluid Mech., Vol. 13, 1962, 481-504.
- 11) たとえば, Rainey P.J. and Camp T.R., Constrained non-linear waves for offshore wind turbine design, Journal of Physics: Conference Series, 75, 2007, 012067.
- 12) たとえば, Chaplin, J.R., Developments of stream-function wave theory, Coastal Engineering, Vol.3, 1980, 179-205.
- 13) たとえば, Fenton, J.D., The steadily-progressing wave problem Solution using programs FOURIER, CNOIDAL and STOKES,

http://johndfenton.com/Steady-waves/Fourier.html

- Longuet-Higgins, M.S., On the statistical distribution of the heights of sea wave, Journal of Marine Research, Vol.XI, 1952, pp.245-266.
- 15) 嶋田健司,石原孟: "極値波高算定式の IEC61400-3 への提案",
 日本風力エネルギー学会論文集, Vol.40, No.4, pp.49-56, 2017.

付録1 レイリー分布の下での代表波高の導出

波高分布がレイリー分布である場合、1/N最大波高 $\overline{H}_{1/N}$ 、個別波高の数 N_0 の最高波高の最頻値 $\hat{H}_{mode}(N_0)$ 、超過確率1/Nの波高 $H_{1/N}$ の統計的有義波高 $\overline{H}_{1/3}$ に対する比率は次式で表される14。

$$\frac{\overline{H}_{1/N}}{\overline{H}_{1/3}} = \frac{\sqrt{\ln N} + \frac{N\sqrt{\pi}}{2} \left\{ 1 - \operatorname{erf}\left(\sqrt{\ln N}\right) \right\}}{1.416}$$
(A.1.1)

$$\frac{\hat{H}_{\text{mode}}(N_0)}{\bar{H}_{1/3}} \cong \frac{\sqrt{\ln N_0}}{1.416}$$
(A.1.2)

$$\frac{H_{1/N}}{\bar{H}_{1/3}} = \frac{\sqrt{\ln N}}{1.416} \tag{A.1.3}$$

ここで、erf は次式の誤差関数である。

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

表-A1 には代表的な $N \ge N_0$ についてこれらの値 を示す。ただし、 $\hat{H}_{mode}(N_0)/\bar{H}_{1/3}$ は式(A.1.2)の近似 式ではなく、参考までに文献¹⁴⁾に基づいてニュート ン法を用いて求めた値を示す。

表-A1 レイリー分布の下での確率波高

N, N_0	$\overline{H}_{1/N}/\overline{H}_{1/3}$	$H_{1/N}/\bar{H}_{1/3}$	$\hat{H}_{\text{mode}}(N_0)/\overline{H}_{1/3}$
250	1.799	1.659	1.673
400	1.863	1.729	1.741
1000	1.982	1.856	1.866

付録2 極値波高の略算式

提案する極値波高の略算式は以下のようになる。

$$\frac{H_{1/1000}}{H'_{0}} \begin{cases} \approx 1.86K_{s} & :h/L_{0} \ge 0.2 \\ \approx \min\left[\left(\beta_{0}^{*} + \beta_{1}^{*}\frac{h}{H'_{0}}\right), & :h/L_{0} < 0.2 \\ \beta_{\max}^{*}, 1.86K_{s}\right] \end{cases}$$
(A.2.1)

$$\beta_{0}^{*} = 0.054 (H_{0}^{\prime}/L_{0})^{-0.38} \exp(20 \tan^{1.5} \theta)$$

$$\beta_{1}^{*} = 0.63 \exp(3.8 \tan \theta) \qquad (A.2.2)$$

$$\beta_{\max}^{*} = \max\left[1.7, 0.55 (H_{0}^{\prime}/L_{0})^{-0.29} \exp(2.4 \tan \theta)\right]$$

ここで、 $H_{1/1000}$ は極値波高、hは水深、 $\tan \theta$ は海底 勾配、 K_s は浅水係数、 L_0 は沖波波長である。 H'_0 は 換算沖波波高で次式により求める。

$$H'_0 = K_r K_d H_0$$
 (A.2.3)

ここで、 K_r は屈折係数、 K_d は回折係数である。 H_0 は統計的沖波有義波高で、沖合の水面変動がレイリー分布に従うと仮定すると、

$$H_0 = 4.004\sigma_{\zeta_0}$$
 (A.2.4)

である。ここで σ_{ζ_0} は沖合の水面変動の標準偏差である。スペクトル沖波有義波高 H_{s0} は次式で定義される。

$$H_{s0} = 4\sigma_{\zeta_0} \tag{A.2.5}$$

したがって、沖合の水面変動がレイリー分布に従う と仮定すると、 $H_0 \cong H_{s0}$ である。観測に基づく合田 の検討 η によると、深水域では統計的沖波有義波高 は

$$H_0 \approx 3.83\sigma_{\zeta_0} \tag{A.2.6}$$

であるのでスペクトル沖波有義波高とは

$$H_0 \approx 0.956 H_{s0}$$
 (A.2.7)

の関係がある。