三次元有効応力解析プログラム HiPER(おわんモデル)と液状化シミュレーション

福武 毅芳

(技術研究所)

Simulating Liquefaction with the Three-dimensional Effective Stress Analysis Program HiPER (Bowl Model) and Liquefaction Simulation

Kiyoshi Fukutake

液状化の予測技術として有効応力解析は重要な技術の1つである。清水建設は世界に先駆けて三次元の有効応力解析 プログラム HiPER(おわんモデル)を開発した。HiPER は研究開発や社内コンサルタントに多く使われている。

本論文では、HiPER に使われている構成式である「おわんモデル」について説明し、要素試験シミュレーションについて述べる。また地震アレー観測記録や大型土槽模型振動実験(E-ディフェンス)のシミュレーションについて考察する。 最後に、実地震の被害として 2004 年新潟県中越地震の造成地の解析結果について述べる。

Effective stress analysis is one of the important techniques available for the prediction of ground liquefaction. Shimizu Corporation was the first in the world to develop a three-dimensional effective stress analysis program. Known as HiPER, it is widely used for R-&-D purposes and by internal consultants.

In this paper, the author describes the "Bowl Model" which is the constitutive equation used in HiPER as well as an element test simulation. Also, the author considers seismic array observation records and a simulation of vibration experiments using large soil container (E-defense). Finally, the author presents the results of analyzing the actual damage caused by the 2004 Niigata-ken Chuetsu Earthquake.

1. はじめに

液状化の予測技術において有効応力解析は重要 な予測技術の1つである。現在、複数の有効応力 解析プログラムが存在する。液状化挙動をこれら のプログラムで予測しようとする場合、構成式の パラメータの設定方法が問題となる。なぜなら構 成式には独特のパラメータがあるため、特殊な要 素試験を必要とするからである。特に弾塑性構成 式においてはそのようなことが言える。一方で履 歴関数型の応力・ひずみ関係では、動的変形試験 結果から容易にパラメータを設定することができ る。

清水建設は世界に先駆けて三次元の有効応力解 析プログラム HiPER^{1),2)}を開発した。構成式のパラ メータは要素試験結果から容易に設定できる。この ため HiPER は研究開発や社内コンサルタントに多 く使われている。

本論文では、HiPER に使われている構成式であ る三次元に拡張した履歴関数モデルとおわんモデル について説明し、要素試験シミュレーションについ て述べる。また地震アレー観測記録や大型土槽模型 振動実験(E・ディフェンス)のシミュレーションにつ いて考察する。最後に、実地震の被害として 2004 年新潟県中越地震の造成地の解析結果について述べ る。

2. 土の構成式

HiPER に用いられている構成式は、応力・ひず み関係として履歴関数モデル、ひずみ・ダイレイ タンシー関係としておわんモデルである。本構成 式のパラメータの数は比較的少なく、パラメータ の値は動的変形試験結果や液状化試験結果から容 易に設定することができる。パラメータの標準値 も用意されており、これを元に誰でも容易に設定 できる。以下に三次元に拡張した履歴関数モデルと おわんモデルについて述べる。

2.1 応力・ひずみ関係(履歴関数モデル)

応力・ひずみ関係には履歴関数モデル(双曲線モデ ルまたは Ramberg-Osgood モデル)を用いている。 履歴関数モデルは G/Go~y, h~y関係との相性がよ く、実験データに容易にフィッティングできる。履 歴関数モデルの三次元化に当たっては、図-1 に示 すように各二次元場の偏差応力~偏差ひずみ関係の 和として示す。それぞれの非線形バネが履歴関数モ デルになっている。これは多重せん断ばねモデル³⁾ を簡略化して三次元化したものである。厳密には客 観性の原理を満たしていないが、実用上は(第一次近 似としては)十分と考えた⁴⁾。

2.2 ひずみ・ダイレイタンシー関係

(おわんモデル)

ひずみ・ダイレイタンシー関係にはおわんモデル ^{2),4)-6)}を用いている。おわんモデルのパラメータは液 状化強度曲線(*R*~*N*_c 関係)から比較的容易に設定で きる。おわんモデルでは液状化強度の下限値 *X*_iがパ ラメータとなっているので、*R*~*N*_cカーブにフィッ ティングさせやすい。以下におわんモデルのエッセ ンスを述べる。 液状化解析で最も重要となるのが、ダイレイタン シーの表現である。まず次式に示す合せん断ひずみ Γと、累積せん断ひずみ *G**を定義する。

$$\Gamma = \sqrt{\gamma_{zx}^{2} + \gamma_{zy}^{2} + \gamma_{xy}^{2} + (\varepsilon_{x} - \varepsilon_{y})^{2} + (\varepsilon_{y} - \varepsilon_{z})^{2} + (\varepsilon_{z} - \varepsilon_{x})^{2}}$$
(1)

$$G^{*=} \sum \sqrt{\Delta \gamma_{zx}^{2} + \Delta \gamma_{zy}^{2} + \Delta \gamma_{xy}^{2} + \Delta (\varepsilon_{x} - \varepsilon_{y})^{2} + \Delta (\varepsilon_{y} - \varepsilon_{z})^{2} + \Delta (\varepsilon_{z} - \varepsilon_{x})^{2}}$$
(2)

おわんモデルではこの*F*と*G**を用いて次式でダ イレイタンシー*ε**を算定する。

$$\varepsilon_{\nu}^{s} = \varepsilon_{\Gamma} + \varepsilon_{G} = A \cdot \Gamma^{1.4} + \frac{G^{*}}{C + D \cdot G^{*}}$$
(3)

ここに*A、C、D*はパラメータである。式(3)の意味 するところは、ダイレイタンシーを以下の2つの成 分の和として表していることである。

①可逆成分である膨張成分: *ε*_Γ(おわん形状)
 ②非可逆成分である圧縮成分: *ε*_G

εGは累積せん断ひずみ G*の双曲線の関数で圧縮し、 双曲線の漸近線 1/D(これは D-100%に対応)まで圧 縮する。1/Dは、初期間隙比を eo、最少間隙比を emin とすれば次式で求められる。

$$\frac{1}{D} = \frac{e_0 - e_{min}}{1 + e_0} \tag{4}$$

εα 成分は繰返しせん断時のダイレイタンシーの 基盤となるマスターカーブであり、*α*成分はそれに 付随する波打ち成分である。なお、液状化強度の下 限値 *X*,以下の応力比では、*G**の累積計算を行わな い。よって、*X*,以下の応力比ではダイレイタンシー は蓄積しない。

おわんモデルでは、6 つのせん断ひずみ軸($p_{zx}, p_{zy}, p_{xy}, \epsilon_x - \epsilon_y, \epsilon_y - \epsilon_z, \epsilon_z - \epsilon_x$)と体積ひずみ軸(ϵ_x)の七 次元のひずみ空間でダイレイタンシーを算定する。 **図-2** ではこのような粒子挙動のメカニズムを容易 に理解できるように $p_{zx} - p_{zy} - \epsilon_x$ の三次元空間に次 元を低減し、概念的な絵で示した。これは多方向の 単純せん断に相当する。式(3)の $\epsilon_T = A I^{1.4}$ がおわん形 状をしている。一方向繰返し単純せん断のメカニズ ムを**図-3**に示す。

図-3 一方向繰返しせん断におけるダイレイタン シーの考え方

ダイレイタンシーを過剰間隙水圧に変換するには、 圧密項 ϵv^{ρ} を考慮し全体の体積ひずみをゼロとする 非排水条件を課すことで求めることができる。式(3) で表される体積ひずみ ϵv^{ρ} はせん断によるダイレイ タンシー成分であるが、これに加え有効応力 σm の 変化による体積変化(圧密成分 ϵv^{ρ})を考える。土の全 体積ひずみ増分 $d\epsilon v$ は、せん断成分を $d\epsilon v^{\rho}$ 、圧密成 分を $d\epsilon v^{\rho}$ とすれば次式で与えられる。

$$\mathrm{d}\varepsilon_{\nu} = \mathrm{d}\varepsilon_{\nu}^{s} + \mathrm{d}\varepsilon_{\nu}^{c} \tag{5}$$

圧密項 deveは、一次元圧密状態を仮定すれば、次式より与えられる。

$$d\varepsilon_{\nu}^{c} = \frac{0.434C_{s}}{1+e_{0}} \cdot \frac{d\sigma_{m}'}{\sigma_{m}'} \qquad (\text{for } d\sigma_{m}' \le 0)$$
(6)

$$d\varepsilon_{\nu}^{c} = \frac{0.434C_{c}}{1+e_{0}} \cdot \frac{d\sigma_{m}'}{\sigma_{m}'} \qquad (\text{for } d\sigma_{m}' \ge 0)$$
(7)

*C*_s は膨潤指数、*C*_c は圧縮指数、*e*₀ は初期間隙比で ある。式(5)、(6)、(7)において非排水条件(d*e*_r=0)を 課すると次式を得る。

$$d\varepsilon_{v}^{s} + \frac{0.434(C_{s} \text{ or } C_{c})}{1+e_{0}} \cdot \frac{d\sigma_{m}'}{\sigma_{m}'} = 0$$
(8)

上式より平均有効応力の増分 dom は次式で求められる。

$$d\sigma'_m = \frac{\sigma'_m \cdot d\varepsilon^s_v}{0.434(C_s \text{ or } C_c)/(1+e_0)}$$
(9)

次ステップの平均有効応力*d*mt+1は次式で表される。

$$\sigma'_{mt+1} = \sigma'_{mt} + \mathrm{d}\sigma'_m \tag{10}$$

図-4 に示すように、小さいせん断振幅でのダイ レイタンシーの発生を抑えるため、液状化強度の下 限値 X₁以下では G*の累積計算をしないで過剰間隙 水圧 P_wの蓄積を抑えている。X₁とは繰返し回数が 十分大きいときの液状化強度(多数回繰返しても液 状化に至らないような応力比)のことである。X₁は 相対密度 D_rと繰返し回数 20 回における液状化強度 R₂₀を用いて近似的に次式 ⁿで与えられる。D_r60% で X=0.82R₂₀ となる。

$$X_l \approx \left(1.0 - 0.3 \frac{D_r}{100}\right) R_{20} \tag{11}$$

2.3 構成式のパラメータ

構成式のパラメータとその意味を表-1、図-5 に 示す。 $p_{0.5}$ と h_{max} は動的変形試験結果へのフィッテ ィングから求めることができる。 G_0 と $p_{0.5}$ は次式に 示すように平均有効応力 σ'_m の関数である。

$$G_0 = G_{0i} \left(\frac{\sigma'_m}{\sigma'_{mi}} \right)^{0.5} \tag{12}$$

$$\gamma_{0.5} = \gamma_{0.5i} \left(\frac{\sigma'_m}{\sigma'_{mi}} \right)^{0.5} \tag{13}$$

ここで G_{0i} と $p_{0.5i}$ は、 $\vec{\sigma}_m = \vec{\sigma}_{mi}$ のときの G_0 と $p_{0.5}$ である。

図-4 液状化強度の下限値 Xiと有効応力経路

Aは逆S字となる応力・ひずみ関係へのフィッティ ングから設定し、C、X」は液状化強度曲線へのフィ ッティングから設定する(図-5)。Dは相対密度 Dr が 100%に達するまでの余裕体積ひずみから算定す る(式(4))。

表-1 構成式のパラメータとその意味 (a) 履歴関数モデル

パラメータ	パラメータの物理的意味						
G_0	初期せん断弾性係数。G ₀ ∝σ'm ^{0.5} 。G ₀ =pV _s ²						
$h_{ m max}$	最大減衰定数。 <i>h</i> _{max} が大きくなれば非線形性 が強くなる。						
γ0.5	<i>G/G</i> = 0.5となるときのせん断ひずみ(基準 せん断ひずみ)である。γ _{0.5} ∝♂m ^{0.5} 。						

(b) おわんモデル

パラメータ	パラメータの物理的意味					
Α	ダイレイタンシー成分の内、膨張成分 <i>er</i> を 表すパラメータ。 <i>A</i> の絶対値が大きいほどサ イクリックモビリティが顕著となる。					
С, Д	ダイレイタンシー成分の内、圧縮成分 <i>ecを</i> 表すパラメータ。1/ <i>C</i> はせん断初期における ダイレイタンシーの勾配。1/ <i>D</i> は双曲線の漸 近線(最大圧縮量)で最小間隙比 <i>e</i> minより算定 する。(式(4))					
$C_{\rm s}/(1+e_0)$ $C_{\rm c}/(1+e_0)$	Csは膨潤指数、Ccは圧縮指数、coは初期間 隙比。					
X_l	液状化強度の下限値であり、応力比t/o ['] m0と 繰返し回数 <i>N</i> _c の関係において、 <i>N</i> _c が十分大 きいときのt/o ['] m0を表す。t/o ['] m0>X _f のとき過 剰間隙水圧が発生する。(式(12))					

図-5 液状化強度曲線とパラメータ C、X_i

表-2 に構成式のパラメータの標準値を示す。動的 変形試験結果も液状化強度も分からないときは、こ れらの値が参考になる。また液状化強度曲線へのフ ィッティングには表-2(b)の値から始めるのがよい (特に *O*。

表-2 構成式のパラメータの標準値 (a) 履歴関数モデルのパラメータ標準値

1.00	γ _{0.5i}	h _{max}		
土質	(σ' _m =1kN/m ² の値)	全応力解析	有効応力解析	
砂礫	$0.00004(\pm 20\%)$	$0.22(\pm 0.03)$	$0.25(\pm 0.03)$	
砂	$0.00005(\pm 20\%)$	$0.24(\pm 0.03)$	$0.27(\pm 0.03)$	
シルト質 砂	0.00006(±20%)	$0.23(\pm 0.03)$	$0.26(\pm 0.03)$	
シルト	$0.0001(\pm 20\%)$	$0.22(\pm 0.03)$	$0.25(\pm 0.03)$	
粘土	0.0002(±20%)	$0.20(\pm 0.03)$	$0.23(\pm 0.03)$	

(注) $\gamma_{0.5i}$ は1kN/m²における $\gamma_{0.5}$ の値 ($\gamma_{0.5} \propto \sigma'_{m}^{0.5}$)

(b) おわんモデルのパラメータ標準値

土質	密度	概略 N値	Α	С	D	Cc/(1+e_0)	Cs/(1+e_0)	X_I
721,799	密	60±20	-4.0±2.0	35 ± 5	60 ± 10	0.00505	0.005	0.60 ± 0.30
砂礫	緩	30±10	-3.0±1.0	20±5	50 ± 10	0.00510	0.005	0.35 ± 0.10
	密	40±15	-3.0±1.0	15 ± 5	50 ± 10	0.00605	0.006	0.30 ± 0.10
756	やや密	20±5	-2.0±0.8	12±5	40±5	0.00610	0.006	0.22 ± 0.05
129	やや緩	10 ± 5	-1.5 ± 0.6	10 ± 5	35 ± 5	0.00615	0.006	0.16 ± 0.04
	緩	5未満	-1.0 ± 0.5	8±5	30 ± 5	0.00620	0.006	0.11 ± 0.02
1.0.1.66	やや密	20±5	-2.0±0.4	12±5	40±5	0.01010	0.010	0.22 ± 0.05
ンルト質	やや緩	10±5	-1.5±0.3	10 ± 5	35 ± 5	0.01020	0.010	0.16 ± 0.04
109	緩	5未満	-1.0±0.2	8±5	30±5	0.01040	0.010	0.11 ± 0.02
Sol. L	やや密	4以上	-2.0±1.0	15 ± 5	30 ± 8	0.02100	0.020	0.16 ± 0.10
272 F	緩	4未満	-1.0 ± 0.5	8±5	20±5	0.02200	0.020	0.11 ± 0.04
*	やや密	2以上	-2.0±1.0	15 ± 5	20±5	0.05500	0.050	0.16 ± 0.04
和工	空幕	9 未 満	-1.0 ± 0.5	0 ± E	10+2	0.05500	0.050	0.11 ± 0.09

3. 要素試験のシミュレーション

多方向単純せん断試験機による排水の要素試験結 果のを図-6に示す。8の字のせん断ひずみ経路せん 断の応力~ひずみ~ダイレイタンシー関係と応力比 ベクトルの結果である。計算結果は実験結果を概ね 表現できている。

図-7 には緩い砂の非排水ねじり試験のシミュレ ーション結果を示す。実験³ではひずみが一気に大 きくなり液状化に至っているが、計算結果はその傾

図-6 8の字のせん断ひずみ経路せん断の実験結 果とおわんモデルによる計算結果

図-7 緩い豊浦砂の応力・ひずみ関係のシミュレー ション

向を説明できている。図-8 には密な砂の非排水ね じり試験のシミュレーション結果を示す。実験 ³は サイクリックモビリティにより逆 S になりながら 徐々にせん断ひずみが増加しているが、計算結果は その傾向を説明できている。図-9 には粘土の応 力・ひずみ関係と有効応力経路を示す。実験 ⁸・解 析ともにせん断ひずみは徐々に大きくはなるが、平

図-8 密な豊浦砂の応力・ひずみ関係のシミュレー ション

図-9 浦安粘土の応力・ひずみ関係と有効応力経路 のシミュレーション

図-10 薬液注入改良体の応力・ひずみ関係と有効 応力経路のシミュレーション

均有効応力σ[·]m が残留し液状化には至っていない。 図-10 には相対密度 D.65%の豊浦砂にシリカ系薬 剤を 4%浸透させた改良体の応力・ひずみ関係と有 効応力経路を示す。実験 ⁹⁰ではひずみは有限の値に 留まり定常な履歴ループとなっている。有効応力は 増減を繰返しつつ残留している。計算ではこのよう な傾向を説明できている。

図-11 には砂の液状化強度曲線(非排水繰返し強 度~繰返し回数の関係)のシミュレーションを示す。 実験は龍岡¹⁰による浅間山砂の値である。実験では 相対密度 *D*rが大きくなるに従い、液状化強度曲線は 立ってくるが、計算でもその傾向を再現できている。

以上示したように、おわんモデルでは、砂や粘土 の土質の違いや薬液注入改良体の応力・ひずみ関係 を構成式を変えることなく説明できる。

図-11 砂の液状化強度曲線のシミュレーション

4. 鉛直アレー観測記録のシミュレーション

シミュレーション解析に用いた地震記録は、1987 年 11 月 24 日、米国カリフォルニア州インペリアル バレーで得られた記録(Superstition Hills 地震 Wild Life)である。地盤モデルは文献¹¹⁾⁻¹³⁾を参考にして図 -12 のように設定した。間隙水圧の上昇した層は、 GL-2.5m~-6.8mの細砂層である。加速度は地表 と GL-7.5m の 2 深度で、間隙水圧は GL-2.9m、 -3.0m、-5.0m、-6.6mの4深度で観測されている。対象とした地震の規模は M=6.1、地表の αmax=201Galで、過剰間隙水圧の挙動からみて地盤 は液状化しているものと思われる。このため図-15(a)に示すよ地表加速度のように15秒付近から加 速度振幅が減少し、20秒付近から長周期化している。 このことからすると、20秒付近から過剰間隙水圧が ほぼ初期拘束圧に達していると思われるが、観測値 は図-17に示すようにまだ上昇途中である。そして GL-7.5mの入力加速度のパワーがかなり小さくなる25秒以降になってもなお上昇し続けているので、 過剰間隙水圧時刻歴の解釈には疑問が残る。このこ とについてはYoud ら¹¹⁾も考察し種々の原因を挙げ ている。

図-12 Wild Life における地盤条件

解析に用いた土質パラメータは、図-12の地盤物 性や既往データを参考にして値を設定し¹⁴、この値 を用いたときの一方向繰返しせん断による液状化抵 抗を図-13 に示す。入力波としては、GL-7.5m で 観測された NS 成分と EW 成分を別々に入力した場 合と、NS 成分と EW 成分を直交二方向に同時入力 した場合の 3 ケースとした。入力波形を図-15(b) に示す。入力振幅は、NS 成分は 169Gal、EW 成分 は 103Gal でり、NS 成分の方が 1.64 大きな振幅と なっている。GL-7.5m における水平加速度波形のオ ービットを図-14 に示す。図より、振幅卓越方向は、 ほぼ NS 方向と一致していることが分かる。水平 2 成分を同時に考えた時の最大加速度振幅は 176Gal (図中に円で示している)であり、NS 成分の最大振幅 169Gal とさほど変わらない。

図-14 GL-7.5m における加速度波形オービット

図-15(a)、16 には地表の応答加速度の時刻歴を 示す。図-16(a)、(b)に示す解析による二方向同時 入力の場合と NS 成分入力の場合の結果においては、 20 秒付近から長周期となっており、さらにその後サ イクリックモビリティーにともなうスパイク状の波 形がみられる。これら一連の傾向は、図-15(a)に示 す観測記録と良く対応している。一方、図-16(c) に示す EW 成分入力の場合には、このような傾向は 全く見られない。

図-17、18には過剰間隙水圧の時刻歴を示す。図

中には推定した初期の鉛直有効応力σ[']^w も示してあ るが、GL-2.9m、-3.0mにおける観測値は、初期 拘束圧以上の値にまで上昇している。解析結果と観 測結果を比較すると、過剰間隙水圧の立上がり時刻 はほぼ同じである。解析ではその後水圧が早く上昇 しており、加速度振幅が減少する時刻と対応してい る。しかし観測結果は、40秒までゆっくりと上昇し つづけており、解析結果とは異なる傾向を示してい る。前述のように観測の加速度波形から判断すると、 20秒付近で液状化していると推察され、観測間隙水 圧のように 20秒以降になってから液状化に至ると は考えにくい。また、EW 成分入力の場合には明か に過剰間隙水圧を過小評価している。

二方向同時入力の応答結果と、振幅卓越成分(今回の解析ではNS成分)のみの入力の応答結果とは、さ ほど差異はない。しかし振幅の小さいEW成分のみ に着目した場合には顕著な差異が見られ、観測結果 とも異なった。これはNS成分の加速度振幅がEW 成分のそれに比べて1.64倍大きいため、液状化のメ カニズムが主にNS成分によって支配され、EW成 分は付随的であったためと思われる。よって、一方 向加振のみで液状化の検討をする際には、振幅が卓

越する方の波を使用する必要がある。今回の解析で は、図-14に示すように振幅卓越方向とNS方向と がほぼ一致しており、NS成分のみを入力した一方 向加振でも観測記録をほぼ模擬できた。しかし、一 般に一方向加振でより厳密な液状化解析を行うには、

水平加速度オービットなどから卓越方向を割り出し、 その方向の成分を入力する必要がある。

5. 大型模型実験の事前予測解析

5.1 解析方針

既往の多くの論文では、既に分かっている実測 データ(模型振動台実験結果など)をターゲットに しているので、実験結果に合うようにパラメータ をいろいろと調整している論文が少なからず見受 けられる。言い換えれば、答えが分かっている実 験結果に解析結果を合わせた論文が多く、真の意 味での「予測」とは言い難い面がある。

本節で紹介する有効応力解析に関する報告では、 一般的な要素試験である動的変形試験結果(G/Go~y、 h~y関係)と液状化試験結果(液状化強度~繰返し回 数関係: R~N。関係)のみを拠り所にしている。解析 は模型実験の実施前に行っているので、土質パラメ ータの調整などは行っておらず、真の予測解析と言 えよう。

5.2 解析条件

予測の対象とした実験は、E・ディフェンスで実施 した大型の 1g 場の実験であり、地盤〜杭〜構造物 系モデルである¹⁵⁾⁻¹⁷⁾。加振は水平2方向同時加振を 行っている。したがって解析は三次元 FEM で実施 している(図-19)。実験で用いた砂は相対密度が 70%のアルバニー珪砂である。大型模型実験の実施 の前に動的変形試験結果と液状化試験を行っており、 構成式のパラメータを決めている。

図-19 地盤~杭~構造物系の三次元 FEM モデル

図-20 動的変形試験結果と R-O モデルのフィッ ティング状況

図-21 液状化試験結果とおわんモデルのフィッテ ィング状況

図-20 には動的変形試験果と R-O モデルのフィ ッティング状況を示す。図-21 には液状化強度曲線 の実験結果とおわんモデルのフィッティング状況を 示す。太線がおわんモデルの計算結果であり、細線 は各実験データを結んだ線である。図-20、図-21 とも実験結果のバラツキの範囲内で合っていると言 える。なお、液状化試験において応力・ひずみ関係 は示されていない。

5.3 事前解析結果と考察

杭近傍の GL-1m における過剰間隙水圧比の時 刻歴を図-22 に示す。解析では過剰間隙水圧比の大 まかな上昇傾向を表現できている。このように、動 的変形試験結果と液状化試験結果がうまく再現でき ていれば過剰間隙水圧比の上昇傾向が再現できるこ とは、ここで紹介した実験以外でも言えることであ る¹⁸⁾。ただし、サイクリックモビリティによる水圧 変動の合いはあまり良くない。液状化の要素試験で 応力・ひずみ関係も示されていれば、それにフィッ ティングすることでサイクリックモビリティはより 良く合った可能性がある。また実験では本加振の前 に小加振を実施しており、想定よりもやや密になっ ていた可能性がある。

過剰間隙水圧の蓄積状況と噴砂の状況を図-23、 写真-1 に示す。実験では基礎の周辺から噴砂が見 られた。解析結果も杭基礎周辺から液状化が生じて おり、両者は調和的である。

図-24 には鋼管杭の M~ φ関係を示す。図-25 には実験における杭の最大曲げひずみと解析におけ る杭の最大曲率を示す。解析では杭頭と支持層境界 部で曲率が局部座屈を示す第3折れ点を超えている。 実験の曲げひずみも同じ箇所で曲げひずみが大きく なっており傾向が一致している。写真-2 には杭頭 の座屈の状況を示す。

図-23 過剰間隙水圧比の蓄積状況

写真-1 加振中のフーチングと噴砂の状況

図-24 鋼管杭の常時軸力下における M~ φ 関係

以上述べた事前予測解析より以下のことが言える。 動的変形試験結果と液状化試験結果がうまく再現で きていれば、液状化挙動は事前予測解析でもある 程度再現できる。液状化の要素試験で応力・ひずみ 関係も示されていれば、それにフィッティングする

図-25 実験における杭の最大曲げひずみと解析に おける杭の最大曲率

写真-2 実験後の杭頭の座屈状況 (左:西側面、右:東側面)

ことでサイクリックモビリティはより良く合った 可能性があり、詳細な液状化挙動の予測には応力・ ひずみ関係も必要であると言える。

6.2004年新潟県中越地震における切盛り地盤の 変形と杭の損傷に関する考察

6.1 概要

2004年新潟県中越地震により、長岡工業高等専門 学校3号館は杭基礎が破壊し、校舎の梁・床・壁が 切断される大きな被害を受けた。当該地盤は複雑な 谷地形を切盛り造成した地盤であり、その震動性状 はかなり複雑であったと予想される。建物には大き な慣性力が作用したことは確かであるが、建物は慣 性力で崩壊したのではなく、地盤が破壊して滑動し、 杭や基礎梁が強制的に地盤から力を受け、破壊に 至ったと推察される^{19,21)}。切土地盤に建つ構造物は 地盤変状の影響は殆ど無く被害も軽微であった。本節 ではこのような複雑な地盤震動と地盤の破壊メカニ ズムを解明するため三次元有効応力解析を実施した。

6.2 長岡工業高等専門学校の敷地と被害

図-26 に長岡工業高等専門学校のキャンパス全体の造成状況と被災した3号館を示す。グレーの色が切土で白色部分が盛土である。3 号館は北東方向に深く入り込んだ沢を埋め立てた盛土と切土に跨って建っている。3 号館は支持杭基礎で支持されている。旧谷の表面には、軟弱な旧表土が薄く分布している。

地震により被災した3号館の平面図と杭頭の損傷 状況を図-27に示す。3階建て部分が盛土上に立地 しており、地震によって3階建て部分は反時計周り に回転し、校舎西端は南西に77cm変位した。さら に校舎南側の地盤に18cmの亀裂が生じたので、地 盤は校舎南西端で95cm 西側斜面方向に変位したこ とになる。図中には南西角のフーチングと杭の被災 状況も示しており、この箇所はφ300mmのRC3本 杭である。図からわかるように、フーチングより杭 の方が大きく動いている。すなわち杭は地盤ととも にフーチングよりも南側に20cm弱、西側に35cm 余り変位しており、杭頭は長さ60cmに亘って破壊 している。このことから杭への地盤変形の影響が大 きいことが分かる。

6.3 解析条件

図-28、29 に示すように 3 号館周辺の不整形な切 盛り地盤を、三次元 FEM でモデル化した。3 号館 南西の法面勾配は 25°~28°である。旧表土の位置

図-27 建物の変位と杭頭の破壊

は、建物の南西端から第三象限のエリアにかけて分 布する(図-29の盛土下の大部分)。

図-30に3号館位置(図-29の×印)における土質 柱状図を示す。N値6以下のロームを主とする盛土 の下には、N値がほぼ0で厚さ約60cmの極めて軟 弱な有機質粘土がある。これは地山の旧表土でGL -5m以深から旧谷表面に沿って存在する。旧表土 の位置は、建物の南西端から第三象限のエリア(図-29のモデル原点より右下側)にかけて分布する。

側方境界は境界断面の地層が遠方まで続くと仮定 し、単純せん断変形する要素を周囲に設けた。すな わち領域の最外縁の節点と1列内側の対応する節点 とを MPC(Multi-Point Constraint)機能²²⁾により3 方向ともに同変位条件とした。

入力地震動は、防災科研長岡支所雪氷研究所で観 測された地中基盤波²³⁾を用いた(図-31)。この地中 の記録は十分に硬い工学基盤(軟岩と推察される GL-100m 付近)で観測されている。雪氷研究所と当 該地盤は700m 離れている。この基盤波の水平2成 分を図-29 のモデル底面(固定)に *E*+*F* 波として同 時に入力した。入力加速度の主軸はほぼ y方向に一 致している。各最大振幅は x 成分:313Gal, y 成分: 477Gal である。卓越振動数は、x 成分で 2.0Hz と 0.5Hz, y 成分で 0.6Hz と 2.0Hz となっており、y 成 分に周期約 2 秒の長周期が見られる。

	_						
深度		呼称	土質	V_{S}	γ_t	$\gamma_{0.5}$	h max
m		-11 P		(m/s)	(KIN/III	(×10)	
0			理土				
1	-			100	16.2	8.7	0.20
2	-			100	10.2	0.7	0.20
3		盛	盛 () (土) (土)	▽地下	水位:GI	-3.5m	
4	-	±	\. ∎	=			
5	-		/);́́∭	130	16.2	14.3	0.20
6	-			150	10.2	17.5	0.20
7	1						
8	-	旧事节	▲ 所 約 の の の の の の の の の の の の の の の の の の	+60	13.7	16.2	0.20
		₩₩₩₩		<u> </u>	1.7.7	10.2	0.20
19	1	/h-11	88 A 88			水位	
10	1	御山	当 一 の の の の の の の の の の の の の	150	16.7	以浅 17.7	0.20
11	-	層	影 粘約 十二			以深	
12	-		中砂			8.8	
13	-	魚	◎粘	200	17.0	以浅	0.00
14		沼屋	。宜。	300	17.6	4.3 以涇	0.22
15		/8	≧砂			10	
			礫			1.8	
		N	Λ Γ. Ε	いたちょう	JUL 2 > 1-	イドレル 向几	4-6-14-

図-29 FEM モデル

図-30 土質柱状図および地盤物性

6.4 解析結果と考察

図-32 に最大過剰間隙水圧比の分布をパネルダ イヤグラムで示す。旧表土およびそれを挟む盛土と 御山層で水圧比が 50%を超えており,最大で約 65% に達している。図-33 に旧表土における過剰間隙水 圧比の時刻歴を示す。最大で 65%程度で頭打ちに なっており、有効応力が残留している。これは、図 -9 に示す粘土の挙動と調和的である。

図-34 には合せん断ひずみ *Г*と最終変形状態を 示す。ひずみの最大値は旧表土において 17%以上生 じている。このことからも旧表土を中心とした滑り 的崩壊が生じたと推察される。図-35 には最終変形 の平面図を示す。緑の矩形は 3 号館の位置で,右側 1/3 が切土に,左側 2/3 が盛土に跨って建っている。 切土部分では変形は小さいが,盛土部分では大きく 図面の下方側(南南西側)に変形している。このため 建物が反時計回りに回転するように変形し杭頭部分 が破壊したと推定され、被災状況とも整合する。た だ解析における変形量は実際の値に比べて小さく 11cm 程度である。その原因として解析では,地表 面のクラックが表現できていないこと、滑り破壊的 な(不連続な)変形は FEM では表現困難なことなど が考えられる。

図-34 最終地盤変形と構造物の捻れ変形のイメージ(色は合せん断ひずみ*I*(最大値17%)を示す)

図-35 残留変形の平面図

以上の解析より、建物は慣性力で崩壊したのでは なく、表層地盤が滑動し、杭や基礎梁が強制的に地 盤から力を受け破壊に至った。すなわち旧表土が谷 筋に沿って滑り、構造物の変形と杭頭の損傷に繋 がったと言える。

7.おわりに

ここでは、当社が開発した三次元有効応力解析プ ログラム HiPER とその適用事例について述べた。 使われている構成式はパラメータの数は少なく、値 も設定しやすい。また数値解析も安定して解ける。 ここで紹介した事例は非排水条件下のものであった が、現在、二相系のコーディングは終わっており、 対外発表^{24),25)}も行っている。今後は、過剰間隙水圧 の消散過程や、ドレーンなどの排水による液状化対 策工法の解析にも適用してゆく予定である。

謝辞

国立研究開発法人防災科学技術研究所の田端憲太 郎博士には E-ディフェンスのデータをご提供頂き ました。また防災科学技術研究所の強震観測網 (KiK-net)のデータを利用させていただきました。こ こに感謝の意を表します。

<参考文献>

- 福武毅芳,大槻明:三次元液状化解析による部分改良地盤の効果の予測,地盤の液状化対策に関するシンポジウム,土 質工学会,pp.205-210,1991.
- 2) 福武毅芳:土の多方向繰返しせん断特性を考慮した地盤・構造物系の三次元液状化解析に関する研究,名古屋工業大学博 士論文,1997.
- 3) 東畑郁生:砂の繰り返しせん断変形特性に及ぼす主応力軸回転の影響,東京大学博士論文,1981.
- 福武毅芳:おわんモデルと履歴関数モデルを併用した構成式, 地盤材料の構成式ワークショップ(第1回), 地盤工学会, 2012.
- 5) 福武毅芳, 松岡元: 任意方向単純せん断におけるダイレイ タンシーの統一的解釈, 土木学会論文集, No.412/III-12, pp.143-151, 1989.
- 福武毅芳, 松岡元:任意方向繰返し単純せん断における応力・ひずみ関係、土木学会論文集、No.463/III-22号, pp.75-84, 1993.
- 7) Fkutake, K. and Jang , J. : STUDIES ON SOIL LIQUEFACTION AND SETTLEMENT IN THE URAYASU DISTRICT USING EFFECTIVE STRESS ANALYSES FOR THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE, Journal of JSCE, Vol.1, Special Topic - 2011 Great East Japan Earthquake, Division A (Invited paper), pp.307-321, 2013
- 8) 中井健太郎,野田利弘,浅岡顕,村上孝弥:浦安市地盤の地 層構成・物理特性・力学特性の把握,地盤工学会特別シンポ

ジウムー東日本大震災を乗り越えて一論文集, pp.114-121, 2014

- 9) 東畑郁生,島田俊介,米倉亮三,社本康広:地震と地盤の液 状化-恒久・本設注入によるその対策-,インデックス出版, p.269,2010.
- 10) 龍岡文夫:土質試験の課題と試験結果の評価-東京湾横断道 路における土質工学の諸問題と室内土質試験-,最近の土質 基礎に関する講習会講演資料,土質工学会編,pp.55-103, 1986.
- Youd, T. L., Holzer, T. L. and Bennet, M. J. : Liquefaction lessons learned from the Imperial Valley, California, Earthquake Geotecnical Engineering, Proceedings Discussion Session, 12th ICSMFE, pp.47-54, 1989.
- 12) Prevost, J.H., Keane, C. M., Ohbo, N. and Hayashi, K : Validation of procedures for analysis of liquefaction of sandy soil deposits, 5th International Conference on Soil Dynamics and Earthquake Engineering, pp.263-276, 1991.
- 13) 時松孝次:基礎周辺地盤の力学的特性,第3回構造物と地盤の動的相互作用シンポジウム,日本建築学会,pp.39-48, 1991.
- 14) 福武毅芳,大槻 明,藤川 智:3次元液状化解析による実測 記録のシミュレーション,第27回土質工学研究発表会, pp.1103-1106,1992.
- 15) 兵庫耐震工学研究センター,研究内容,プロジェクト成果,大都 市大震災軽減化特別プロジェクト成果報告書(平成17年度, 平成18年度)入手先

<http://www.bosai.go.jp/hyogo/research/project_result/proj ect_result_n.html>(参照 2016.4.8)

- 16) 福武毅芳,佐藤正義,田端憲太郎,田地陽一:E-ディフェンスによる液状化地盤中の杭基礎の震動実験・その3:R-Oモデルとおわんモデルによる事前予測解析・,日本建築学会大会学術講演梗概集,構造 I, pp.709-710, 2008.
- 福武毅芳,田端憲太郎:液状化解析プログラム HiPER を用 いた大型模型実験の事前予測解析,地盤工学会誌 Vol.64, No.8,地盤工学会,pp.30-33,2016.
- 18)藤川智,福武毅芳:近傍改良地盤の影響を考慮した神戸ポ ートアイランド鉛直アレー記録のシミュレーション,土木学 会論文集, No.687/III-56, pp.169-180, 2001.
- 19) 福武毅芳,尾上篤生,堀田洋之:切盛り地盤の三次元等価線 形解析による安定性の検討,宅地地盤の安全性と性能評価に 関するシンポジウム,pp39-46,地盤工学会,2005.
- 20) 福武毅芳, 堀田洋之, 尾上篤生, 長井秀明: 2004 年新潟県中 越地震における切盛り地盤の三次元有効応力解析と等価線 形解析の比較, 日本建築学会大会学術講演概要集, 構造 I, pp.653-654, 2006.
- Onoue, A. Wakai, K. Ugai, K. Higuchi, K.Fukutake, H.Hotta,S. Kuroda, H. Nagai : Slope Failures at

Yokowatashi and Nagaoka College of Technology during Earthquake, Soils and Foundations, Vol.46, No.6, pp.751-764, 2006.

- 22) 吉見吉昭, 福武毅芳: 地盤液状化の物理と評価・対策技術, 技 報堂出版, 2005.
- 23) 基盤強震観測網(KiK-net)
 http://www.kik.bosai.go.jp/kik/(参照 2018.10.26)
- 24) 桐山貴俊,福武毅芳,馬渕倉一,浜田隆司:液状化プログラ ム HiPER の二相系化における検証と妥当性確認(その1:線 形理論解との比較),第53回地盤工学研究発表会, pp.1863-1864, 2018.
- 25) 福武毅芳,桐山貴俊,馬渕倉一,浜田隆司:液状化プログラム HiPER の二相系化における検証と妥当性確認(その2: R-Oモデル+おわんモデルの遠心実験結果との比較),第53回地盤工学研究発表会,pp.1865-1866,2018.